

ENERGY STATEMENT ADDENDUM

Rockwell

Intended for

Leopard Guernsey Anchor Propco Limited

Document type

Energy Strategy Report

Date

December 2018

CHARLTON RIVERSIDE OUTLINE ENERGY STRATEGY

Revision **03**

Date December 2018

Made by Orestis Angelidis

Checked by Crispin Matson

Approved by Crispin Matson

Description Outline Energy Strategy

CONTENTS

EXECUT	IVE SUMMARY	4
1.	INTRODUCTION AND BACKGROUND	6
1.1	Project Brief	6
2.	PROPOSED DEVELOPMENT	7
2.1	Site Description	7
2.2	Sources of Information	7
2.3	Floor Areas	7
3.	PLANNING POLICY CONTEXT	9
3.1	Planning Context	9
3.2	Summary	10
4.	METHODOLOGY	11
5.	TARGET CARBON EMISSIONS	12
5.1	Residential Buildings	12
5.2	Non-Residential Buildings	12
6.	BE LEAN	13
6.1	Building Design Envelope Recommendations	13
6.2	Lighting Design Recommendations	14
6.3	HVAC Systems and Controls Recommendations	14
6.4	Cooling Demand Reduction Recommendations	14
6.5	Be Lean Results	15
7.	BE CLEAN	16
7.1	District Heat Networks	16
7.2	CHP Contribution	18
7.3	Energy Centre Requirements	20
7.4	Environmental Considerations	21
7.5	Be Clean Results	22
8.	BE GREEN	24
8.1	Technology Appraisal	24
8.2	Be Green Results	27
9.	CONCLUSIONS AND RECOMMENDATIONS	29
APPEND	DIX 1 - ENERGY CENTRE LAYOUT	31
APPEND	DIX 2 - HEATING PLANT DATA SHEETS	33

APPENDIX 3 – SAP WORKSHEETS	35
APPENDIX 4 – BRUKL AND DER SHEETS	42
APPENDIX 5 - HELIOSCOPE SUMMARY	43
APPENDIX 6 - OVERHEATING RISK ANALYSIS	44

TABLES

Table 1: Assumed Floor Areas for Dwellings	8
Table 2: Building Fabric U-Values Incorporated for TER Model	12
Table 3: Building Properties for Be Lean Scenario	13
Table 4: CoP for Heat Networks Considerations	17
Table 5: Regulated Domestic Carbon Dioxide Savings from SA	ŀΡ
Modelling	29
Table 6: Non-Domestic Results Summary	29
Table 7: Be lean Calculation Details	36
Table 8: Be Lean Summary	37
Table 9: Be Clean Calculation Details	38
Table 10: Be Clean Summary	39
Table 11: Be Green Calculation Details	40
Table 12: Be Green Summary	41

EXECUTIVE SUMMARY

Ramboll was commissioned by Leopard Guernsey Anchor Propco Limited to produce an outline energy strategy document for their proposed development at Charlton Riverside in London. This document is an updated version of a document issued by Ramboll in December 2017 and all proposed amendments do not impact or change the results previously presented. The document is intended to provide an indication of the preferred energy strategy in advance of the final design submission for planning. The proposed development consists of residential buildings, community facilities and office/commercial space.

The purpose of the energy strategy was to explore energy supply options for the proposed development and consider whether they would comply with national and local carbon emissions requirements.

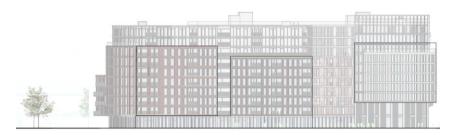


Figure 1: Elevation Courtesy of Simpson Haugh

The key policy factors to consider were:

- National Part L building regulations target carbon emissions rating
- **The London Plan** minimum requirement to reduce emissions by 35% in excess of the Part L figures

• **Zero Carbon Homes** objective to reach zero carbon for residential buildings through on-site measures or off-setting.

The study was conducted in accordance with the London Plan's "Be Lean, Be Clean, Be Green" energy hierarchy.

Conclusions and Recommendations

It is recommended that **a heat network supplied by natural gas CHP** is pursued as the preferred option for energy supply to the proposed development in order to comply with building regulations and the London Plan.

Incorporating renewables would further reduce CO_2 emissions and reduce the electricity demand from the National Grid, PV panels where considered as the most applicable renewable energy generation for the proposed development.

Be Lean

In the first instance, a range of LEAN energy efficiency measures has been proposed, such as improved building fabrics and high-performance glazing.

In the first instance, the aim is to "be lean" by reducing energy demand through measures such improved fabric efficiency. The use of communal gas boilers was explored as a base case supply asset, in combination with improved building fabric efficiency measures.

The results showed that this option was suitable as the Carbon Dioxide (CO_2) emissions were found to be below the Part L 2013 building regulations target emissions rate (TER) by 6% for residential buildings and 20% for commercial. The Design Fabric Energy Efficiency (DFEE) of every property modelled met the criteria.

Be Clean

In line with the London Plan energy hierarchy, the CLEAN measure of a natural gas CHP led district heating network was incorporated into the model in combination with the improved building fabric measures.

An appropriate CHP engine size was estimated to be 291 kW_{th}, which would be capable of supplying approximately 87% of the annual heat/hot water supply if operated in conjunction with a thermal store of volume 20 m^3 . The energy centre was sized based on the main plant items (CHP boilers, etc.) along with the auxiliary equipment resulting in a total floor area of 171 m^2 .

The results showed that natural gas CHP supplying a community heat network would be sufficient to meet Part L and London Plan targets.

The annual CO_2 emissions were found to be 42% below the TER and therefore the option exceeds the London Plan requirement with a margin of 7%.

Be Green

Following a desktop investigation of a range of renewable energy supply opportunities and consultation with the Architect, it was concluded that the preferred option for the incorporation of "green" measures into the design was Solar PV panels which could reduce the residential CO_2 emissions by a further 9% of the TER.

Therefore, a heat network supplied by gas CHP in addition to 205 kWp of PV cells having a total PV area of 1,377 m² was deemed to be the preferred strategy, reducing carbon emissions by 51% over the 2013 Building Regulations baseline.

The remaining CO_2 emissions of 396 tonnes per year, will result in a required off-setting payment of approximately £23,726 per annum to achieve zero carbon requirements applicable to the residential element of the development.

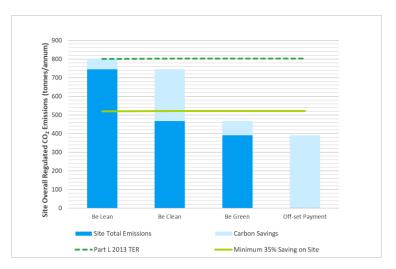


Figure 2: Results summary

1. INTRODUCTION AND BACKGROUND

Ramboll was appointed by Leopard Guernsey Anchor Propco Limited to prepare an outline energy strategy assessment for the proposed development at Charlton Riverside, London. The proposed development will comprise of residential and non-residential buildings.

The purpose of the energy strategy is to achieve the maximum CO₂ emission reduction, explore energy supply options for the proposed development and assess whether they would comply with national and local carbon emissions requirements.

The energy statement relates to the detailed planning application for the proposed development.

1.1 Project Brief

The preparation of this outline energy strategy is intended to provide an initial indication of a viable energy strategy in advance of submission of the full planning application.

The energy demand calculations and technology assessment undertaken as part of the outline energy strategy were primarily intended to provide an indication of the required energy capacity of the proposed development and establish a suitable supply technology to meet current national and local policy requirements.

Key objectives were as follows:

- Carry out Part L Building Regulations Standard Assessment Procedure (SAP) modelling for ten sample residential apartments.
- Assess the potential for connection to a district heating scheme in the vicinity.

- Assess the potential for creation of an energy centre for the development via an Energy Services Company (ESCo).
- Assess potential for integration of low or zero carbon (LZC) technologies including combined heat and power (CHP) and renewables.
- Carry out energy scenarios analysis in order to determine the fraction of annual heat demand that can be met (assuming heat led design) by CHP. Carry out provisional sizing of central CHP plantroom/energy centre and thermal stores. Analyse emissions and provide advice on the flue size/height required.
- Prepare the final Energy Assessment/Statement.

This report provides an overview of the proposed development and the assumptions made by Ramboll in developing this report, followed by the methodology and presentation of energy strategy scenarios.

2. PROPOSED DEVELOPMENT

This section outlines the key information regarding the proposed Charlton Riverside Development and presents the assumptions made for the outline energy strategy.

2.1 Site Description

The proposed development is located alongside Greenwich Peninsula in London.

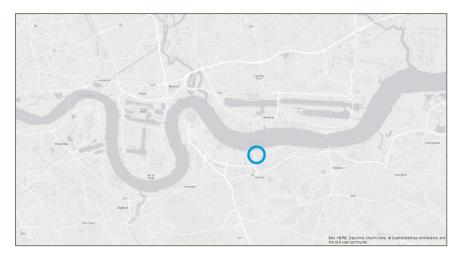


Figure 3: Site Location

The proposed development comprises:

- 771 residential units provided within 11 buildings ranging in height from 2 to 10 storeys, including extensive private gardens and roof terraces;
- 3,280 m² (GIA) of flexible business/retail use;
- 496 m² (GIA) of flexible community/leisure use;
- ¹ Simpson Haugh and Partners, November 2017 and November 2018.

- 338 m² (GIA) of community space for use as a creche;
- Up to 1,400 residential and commercial cycle spaces; and
- Two basements, providing up to 208 car parking spaces (148 within Plot A and 60 within Plot B.

The non-residential space for this proposed development totals $4,114m^2$.

2.2 Sources of Information

The Site plan matrices, building schedule and floor plans¹ were used as the preliminary source of information for use in compiling the energy strategy.

2.3 Floor Areas

The floor areas for the eight dwelling categories from the building schedule were the basis for this analysis, as shown in Table 1.

Dwelling Type	Floor Area (m²)
Studio apartment	39
1 bed apartment	50
2 bed apartment	66
2 bed townhouse	79
3 bed apartment	80
3 bed townhouse	93
4 bed apartment	94

Table 1: Assumed Floor Areas for Dwellings

With regards to the thermal properties of building materials, in the first instance the national building regulations U-values were incorporated (see section 5).

3. PLANNING POLICY CONTEXT

This section outlines the national and local policy applicable to the preparation of the outline energy strategy.

3.1 Planning Context

The energy strategy must aim to comply with the policies set out in the sub-sections below.

3.1.1 National Planning Policy – Building Regulations

Approved Document Part L2 2013² provides requirements and guidance on the Conservation of Fuel and Power.

The main changes from the previous Part L2 2010 regulations that are determined by these criteria are as follows:

- Comparison of actual building against target emission ratings
- Limits on design flexibility
- Limiting solar gain in summer
- Building performance
- Providing information.

The building must meet or exceed the **Target Emissions Rate (TER)** of a notional building as specified by Part L 2013 building regulations approved software.

In order to provide evidence of this, a SAP calculation is carried out both on a notional building with fixed parameters and the actual building.

 2 The Building Regulations 2013, L2: Conservation of Fuel and Power, HM Government

As a result, calculations showing compliance with Part L Standard Assessment Procedure (SAP) and Simplified Building Energy Model (SBEM) are required at both the design stage and once the building has been completed. This enables energy efficiency measures to be incorporated at an early stage and to demonstrate that these have been incorporated.

3.1.2 Local Planning Policy - The London Plan

The London Plan's Energy Planning Guidance³ was revised in March 2016. The Plan states that from 1st October 2016 new developments should seek to achieve a Zero Carbon target with a minimum reduction in carbon dioxide emissions of **35% below the regulated Carbon Dioxide (CO₂) emissions** (beyond Part L 2013) on-site.

The remaining regulated CO_2 emissions, to 100%, are to be off-set through a financial contribution to the Borough. This contribution will be paid at the value of **£60/tonne** for a period of 30 years.

The policy requires the following Energy Hierarchy: **Be Clean, Be Lean, Be Green** to be adopted.

Figure 4: Flow Diagram of London Plan Energy Hierarchy

The above energy hierarchy outlines the methodology under which the Greater London Authority (GLA) requires sustainable building design to be assessed.

 $^{^3}$ Energy Planning – Greater London Authority Guidance on Preparing Energy Assessments, March 2016

The energy hierarchy first looks at reducing the energy demand of a building through passive design measures (be lean), then by incorporating active energy measures through energy efficient servicing strategy, lighting and electrical controls, community heating (be clean), and finally by further reducing the carbon emissions through the use of on-site renewable energy technologies (be green).

Future projects are encouraged to evaluate the incorporation of CHP into their developments and consider the potential to extend such schemes beyond site boundaries to adjacent energy consumers.

Following on from this goal, it is required that energy systems for all major developments be evaluated and designed with the following factors in mind:

- Connection to an existing heating network or a site wide CHP network.
- Renewables such as PV installation in combination with the above if the Carbon Reduction Targets are not met.

The final London Plan requirement to consider is Policy 5.7: "There is a presumption that all major development proposals will seek to reduce carbon dioxide emissions by at least 20 per cent through the use of on-site renewable energy generation wherever feasible."

A draft version of the updated London Plan has been published in December of 2017. The proposed targets and methodologies do not vary from the existing, thus it is unlikely that the final updated version will affect the results of the current report. The offset payment tariff is suggested to rise from £60 to £95 per tonne of carbon per year, which would affect the final off set payment.

 $^{4} \qquad https://www.london.gov.uk/what-we-do/planning/london-plan/current-london-plan/london-plan-chapter-5/policy-57-renewable-energy$

3.2 Summary

Taking into account the policies listed, a number of energy and carbon performance parameters and targets can be defined for the proposed development and can be incorporated into the methodology for the outline energy strategy (see section 4). The targets are summarised as follows:

- Compliance with 2013 Building Regulations Part L2A: Conservation of Fuel and Power.
- Dwelling Carbon Emission Rate (DER) to be less than Target Carbon Emission Rate (TER).
- Design Fabric Energy Efficiency (DFEE) Rate to be less than Target Fabric Energy Efficiency (TFEE) Rate.

The targets are generally expected to be achieved through the application of energy efficiency measures ('be lean') alone.

- **2.** Compliance with London Plan policy 5.2: Minimising carbon dioxide emissions to deliver a site-wide carbon emissions reduction of at least 35% below 2013 Building Regulations and to reflect the Zero Carbon Homes initiative.
- **3.** Compliance with London Plan policy 5.5 and 5.6 by using a district heating network to supply heated water for space heating and DHW from an energy centre that includes CHP.
- **4.** Compliance with London Plan policy 5.7 by including, where feasible, a contribution from on-site renewable generation technologies to support the reduction of carbon emissions.

4. METHODOLOGY

The main objective of this report is to identify an energy strategy which would deliver a site-wide carbon emission reduction of 35% below the 2013 building regulations as required by London Plan Policy.

The energy strategy for the proposed development was prepared using the energy hierarchy methodology presented in section 3.1.2.

The estimated regulated energy demand of residential buildings was modelled using the National Homes Energy Rating (NHER) software to calculate the carbon emissions at each stage of the Energy Hierarchy. The SAP calculations have been undertaken in line with the Part L1A 2013 and SAP 2012⁵ methodology and can be found in Appendix 3.

Figure 5: Screenshot of Inputs to SAP Model

For non-residential buildings, the energy demands and CO_2 emissions were determined using the Integrated Environmental Solutions (IES) software. The results from the analysis were given in Building

⁵ SAP 2012, The Government's Standard Assessment Procedure for Energy Rating of Dwellings, published on behalf of DECC by: BRE

Regulations Part L 2013 (BRUKL) output document. The building schedule indicates that most of the developments are offices (75% of the floor area), a single simulation was performed whose results were used for all commercial consumer classes.

Emissions associated with unregulated elements (for example, cooking and home appliances) have been calculated based on the SAP 2012 Section 16 methodology. The SAP calculations have been carried out for each apartment type referred to in the accommodation schedule for ground, middle and top floors. Townhouses were not modelled separately in SAP due to their resemblance to apartments.

The first step was to **establish the TER** in tonnes CO_2 per annum for the proposed development. This would set the CO_2 level to be achieved by the proposed development. The TER is calculated in accordance with the Part L 2013 requirements and it was assumed that heating would be provided by gas boilers.

Following this, a "**be lean" scenario** was considered whereby a variety of energy efficiency measures were applied to the building envelopes, their internal mechanical and electrical installations and associated controls to minimise the development's carbon emissions.

The **"be clean" scenario** built on the previous model by incorporating a CHP engine as the primary heat supply asset and considering connection to a nearby existing heat network.

Finally, for the **"be green" scenario** renewable energy was incorporated in the form of solar PV panels.

Based on the results of modelling these scenarios, **conclusions** could then be drawn with regards to the preferred option.

5. TARGET CARBON EMISSIONS

This section presents the calculated TER values which set out the carbon requirements for the proposed development. Each of the scenarios modelled under the energy hierarchy methodology were compared to these results.

5.1 Residential Buildings

As stated in the methodology, SAP modelling of the residential component of the proposed development was carried out using Building Regulations approved NHER software.

The building fabric assumed as a base line corresponds with the standards set out by SAP 2012 for achieving the minimum fabric energy efficiency standards for zero carbon homes for each building type. By adhering to these standards, the energy demand of the dwellings is reduced through passive design measures in accordance with the "Be Lean" philosophy set out in the London Plan.

Element	SAP 2012 Notional Dwelling U-Value (W/m²K)		
Wall	0.18		
Floor	0.13		
Roof	0.13		
Glazing	1.5		
Party Wall	0		

Table 2: Building Fabric U-Values Incorporated for TER Model

Figure 6 shows the Target CO_2 Emission Rate (TER) for residential properties within the proposed development and the Zero Carbon CO_2 emission rate that is required for compliance with the London Plan. The values were found to be 758 and 521 tonnes CO_2 per annum for Part L 2013 and the London Plan respectively.

5.2 Non-Residential Buildings

For non-residential buildings the BRUKL documents from the IES study, shown in Appendix 4, indicated a TER of 84 tonnes per annum. This results in a London Plan target of 55 tonnes per annum.

The non-residential target emissions are shown in Figure 6 with a lighter colour (hatched) as part of the total site TER.

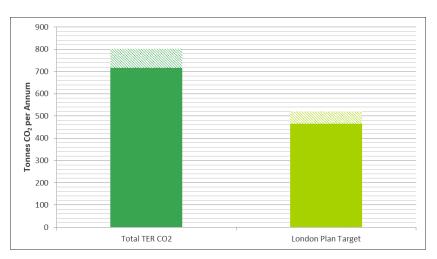


Figure 6: Part L 2013 TER for Domestic and Non-Domestic (hatched)
Buildings

6. BE LEAN

As part of a suitable Energy Strategy, the proposed development could feature best practice passive energy saving measures to achieve compliance with Part L of the Building Regulations without reliance on the contribution of renewables and low carbon technologies.

This section analyses the energy efficiency measures that have been considered within the study in order to minimise the energy demand and achieve excellent building performance.

6.1 Building Design Envelope Recommendations

- The general internal layout should be designed to ensure good daylight access for occupied spaces.
- Solar control glazing should be considered on the south, west and east elevations to limit solar gains. Light-coloured curtains should also be used. The g value used to avoid overheating was 0.4. All windows are doubled glazed.
- Each space should be designed with windows which can be opened to allow natural ventilation and be provided with trickle vents for the same purpose during winter times.
- The benefits of heavyweight buildings with good thermal mass properties should be maximised where possible.
- Good practice u-values should be targeted across external elements to reduce heat losses (see Table 3). An air pressure test will be required for each dwelling.

Table 3: Building Properties for Be Lean Scenario

SAP 2012		Energy efficiency measures	
Fabric thermal		U values	
parameters	Roof	0.13	W/m2K
	External Walls	0.18	W/m2K
	Party Walls	-	W/m2K
	Ceiling and Ground floor	0.13	W/m2K
	Windows	1.40	W/m2K
	External Doors	1.00	W/m2K
Window Characteristics	G Value	0.4	
	F Factor	0.8	
Thermal			
bridges		y-value	
	Other Lintels (including other steel lintels)	0.3	W/mK
	Sill	0.04	W/mK
	Jamb	0.05	W/mK
Ventilation	Air Tightness	3	m3/hr/mw @50Pa
	Mechanical Ventilation	Balanced with heat recovery	
	Ventulation	SPF=0.96 w/l/s, 90% efficiency	
		Rigid ducting	
Heating	Boiler/main heating system	Communal Gas fired, 86% efficiency	
	Controls	Charging system linked to use, programmer and TRV's	
Electrical Demand	Low energy lighting	100%	
	Cooking	Electric	

6.2 Lighting Design Recommendations

Energy consumption from lighting should be minimised via the following measures:

- Dedicated energy efficient light fittings should be installed throughout dwellings;
- Lighting in dwellings should be occupant controlled via a master switch control where feasible and practical;
- In communal and circulation areas, lighting should be controlled by timed switches;
- Lighting in retail spaces should have automatic daylight linking controls (where appropriate);
- The lighting of public toilets and stores should be controlled via presence sensors;
- All other areas should have central scene control or local switching facility to ensure lighting is used as needed;
- External lighting should be energy efficient with daylight and/or time clock controls; and
- Highly efficient LED lighting should be used throughout the proposed development.

6.3 HVAC Systems and Controls Recommendations

6.3.1 Retail Areas:

- Highly efficient cooling; and
- All fans and pumps should operate with variable speed control.

6.3.2 Residential Units:

 Communal boilers should be used and be of high efficiency specifications working at condensing mode when appropriate. An

- efficiency of 86% was used as per Domestic Building Services Compliance Guide;
- Mechanical ventilation with heat recovery having an SPF of 0.96W/l/s and 90% efficiency. Additionally, there is the capacity for opening the windows; and
- Hot water pipes, tanks and ducts should be insulated.

6.3.3 Across the Proposed Development:

- Electric sub-metering should be installed to monitor and target energy use within the proposed development. At least 95% of all gas and electrical use should be metered to encourage lower energy use and increase control. All major items of plant should also be sub-metered;
- All meters should provide pulsed output to the Building Energy Management System (BMS) for automated metering and centralised monitoring of all energy and water use. The BMS system should also ensure that heating and cooling systems are highly responsive and operate at their optimal efficiency in maintaining internal conditions to comfort standards; and
- The metering strategy should be in alignment with CIBSE TM39⁶.

6.4 Cooling Demand Reduction Recommendations

Minimizing the risk of summer overheating is crucial to maintain comfort all around the year. The proposed development will reduce the risk of summer overheating by:

- Using solar controlled glazing on south, west and east elevations;
- Using an overhang on the ground floor to limit high angle solar gain;
- Use of automatic daylighting control of retail lighting; and
- Use of energy efficient LED lights.

⁶ TM39 Building Energy Metering, CIBSE

An overheating risk analysis has been performed and the relevant report is presented in Appendix 4 together with recommendations.

6.5 Be Lean Results

6.5.1 Residential Buildings

The predicted regulated domestic site-wide CO₂ emissions for residential buildings under this scenario are shown in Figure 7.

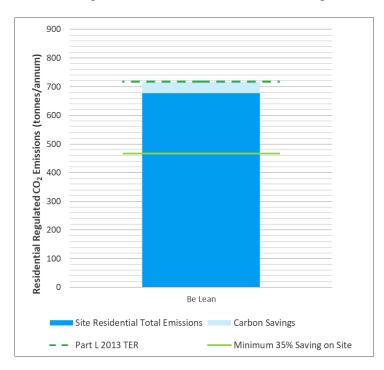


Figure 7: Be Lean Results Carbon Emissions for Residential Buildings

In this scenario the CO_2 emissions are estimated to be less than the building regulations TER by 6%.

The Design Fabric Energy Efficiency (DFEE) is also **less than the Target Fabric Energy Efficiency (TFEE) by 9%**, meeting the DFEE/TFEE compliance. The SAP worksheets showing the outputs for all flats can be found in Appendix 3.

6.5.2 Non-Residential Buildings

The predicted non-residential "be lean" outputs from the IES modelling are shown in the following figures. The carbon emissions are **20% less than the TER** so compliance is achieved.

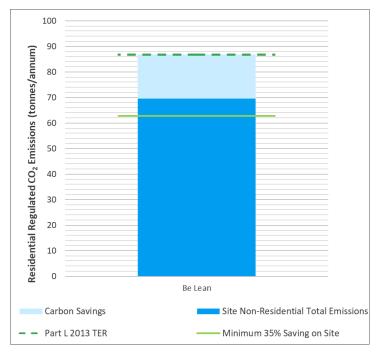


Figure 8: Be Lean Results for Non-Residential Buildings

7. BE CLEAN

Two primary options were considered as part of the "be clean" objective:

- Connection to an existing district heating (DH) network; and
- Creation of a CHP energy centre.

7.1 District Heat Networks

In the first instance, an investigation was carried out into the potential for connection to an existing heat network.

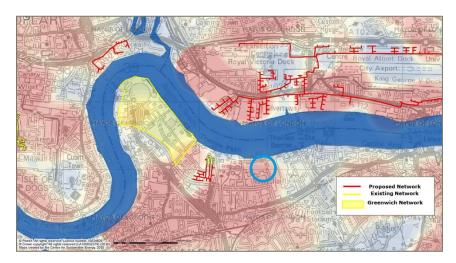


Figure 9: Existing and Proposed Heat Networks (Courtesy of London Heat Map)

An existing heat network is present in Greenwich Peninsula which was considered as an opportunity for connection to the proposed

 7 Contact: Maria Yashchanka, Planning Policy Officer in the Royal Borough of Greenwich on 12/10/2018.

development. It is being supplied by a gas CHP engine and is therefore assumed that carbon reductions could be achieved by connecting to this network.

After contacting the Royal Borough of Greenwich planning office, it was confirmed that the closest DH network is the one in the Greenwich Millennium Village, requiring a pipeline of approximately 2 km to connect to as presented in Figure 9. Such a connection was characterised as prohibitively expensive. However, the borough's energy masterplan envisages a potential transmission line through the site at some point in the future. Since no specific timeline is set for the feasibility work for the transmission line, it was decided that the best course of action is to ensure that the energy centre is future proof for such a connection.

Consecutively, the buildings at Charlton Riverside will be designed to incorporate future-proofing measures so it will have the possibility of connecting to a potential network developed in the future. In particular, as required by the London Plan, the following measures will be undertaken:

- **Provision of a single plant room** producing all hot water. Space should be allowed for and identified in the plant room to facilitate the connection of an interfacing heat exchanger.
- Soft points should be created in the building walls to allow pipes to be routed through.
- External **pipework routes should be identified** and safeguarded.

An indicative layout of the network is illustrated at Figure 10 below.

Figure 10: Indicative District Heat network routing

Table 4, sets out the main considerations that should be raised from an early stage according to the Code of Practise (CoP) for heat networks⁸.

Table 4: CoP for Heat Networks Considerations

Code of Practice Theme	Consideration
Correct sizing of plant and network	Taking into account diversification of loads.

Code of Practice Theme	Consideration
Achieving low heat network losses	The network routing should be developed to minimize the overall length of the network. Use of correct sized pre-insulated pipework for distribution would reducing losses to 10%. Use of share risers in the buildings avoiding large branch lengths would reduce the building losses to 10%.
Achieving consistently low return temperatures and keeping flow temperatures low	Radiators or other emitters should be sized and balanced carefully in order to operate between 70 C and 40 C, allowing lower operating temperatures. Heat exchangers should be sized for low return temperatures as well. A temperature optimization study to be carried out for the heat network accounting for lifecycle costs and environmental impacts.
Use of variable control principles	Use of variable speed pumps in a range of duties, two port control valves and variable flow temperature control.
Optimising the use of low carbon heat sources to supply the network	Suitable thermal store to minimize use of boiler during peaks and extend the CHP operating hours, CHP engines sized to supply at least 75%. A range of low carbon heat source solution will be considered for the future (eg heat pumps).
Delivery of a safe, high quality scheme where risks are managed and environmental impacts controlled.	Adoption of international standards (ISO 9001, ISO 14001, ISO 3100, ISO 18001, PAS 55). Compliance with the requirements of the Heat Trust scheme.

⁸ CIBSE CP1: Heat Networks: Code of Practice for the UK

7.2 CHP Contribution

Decentralised energy production through a combined heat and power (CHP) installation in combination with other fossil fuel sources and/or other renewable technologies is identified as the most cost effective mechanism for delivering carbon dioxide reductions in London. The advantage of a DH system is its flexibility and its ability to utilise a variety of heat sources, including what can be called low-grade heat, in order to supply a wide range of Consumers and Building types.

CHP entails the use of waste heat from electrical generation for space heating and domestic hot water. It is considered a Low or Zero Carbon technology (LZC) rather than a renewable technology unless a renewable fuel source is used, e.g. biomass. The advantage of CHP is high efficiency – approximately 80% to 90% overall – compared with power stations where heat is not recovered (50% efficiency).

The space heating and hot water demand profiles estimated as part of the "be lean" calculations have been combined with local hourly temperature data and non-domestic typical demand profiles. The peak heat demand requirement was estimated through the Danish standard DS 439 diversity curve⁹ and incorporated in the energy model.

The energy model was developed in energy pro in order to estimate hourly energy demand and CHP contributions. No cooling demand was modelled, and it was assumed that all the electricity produced is exported to the grid at a fixed tariff. The hourly annual heat demand profile produced by energy pro can be found in Figure 11 along with some monthly profiles for winter and summer months. The configuration of the Energy Pro model can be seen in Figure 14.

Figure 11: Annual Hourly Heat Demand Profile

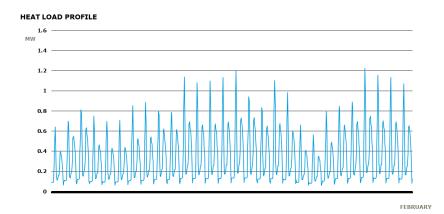


Figure 12: February Hourly Heat Demand Profile

18

⁹ CIBSE (2015), Heat Networks: Code of Practice for the UK

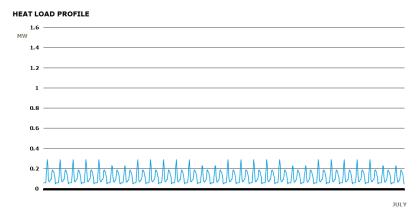


Figure 13: July Hourly Heat Demand Profile

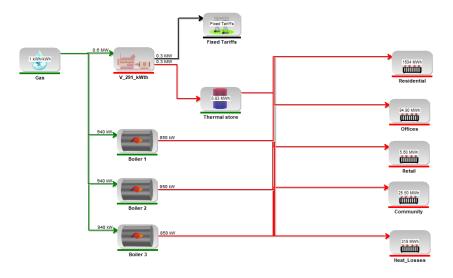


Figure 14: Energy pro model

As part of the exercise, four real CHP engines from 200 to 300 kW thermal have been modelled with appropriate thermal stores to conclude in the optimal engine size. The modelling was based on the SAP calculations with loads varying with temperatures based on historical weather data.

A CHP engine of 250 kW_{el} -291 kW_{th} backed up with 20 m³ of thermal store and 3x850 kW low NOx gas boilers, has proven the optimal configuration covering the demand with the smallest engine footprint, while exceeding 75% CHP share of heat threshold. That CHP engine achieved 5,909 run hours and 87% of the annual heat share. The gross thermal efficiency of the CHP is 77.47% while the engine data sheets providing additional technical information are included in Appendix 2.

Figure 15 and Figure 16 set out the asset contribution in production for a typical winter and summer period respectively. It is clear that during the hours of low demand the CHP is charging the thermal store in order to meet the peak demand requirements later on the day.

PRODUCTION CURVE CHP (291 KW THERMAL)

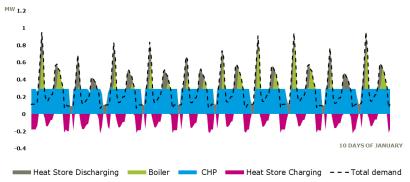


Figure 15: Production curve during winter

During summer, where the heat demand is less than winter, the boilers are rarely used since the CHP in combination with the thermal store have sufficient capacity to meet the demand.

PRODUCTION CURVE CHP (291 KW THERMAL)

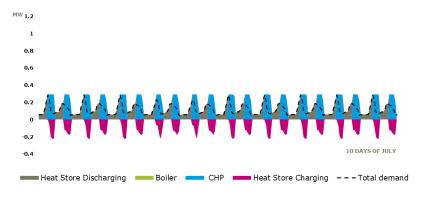


Figure 16: Production curve during summer

7.3 Energy Centre Requirements

The floor area requirement for the energy centre (including main plant items and auxiliary equipment) should be at least $171~\text{m}^2$, taking into account the need for back-up/peaking boilers and thermal store. It was assumed that thermal stores would be required with a capacity equivalent to approx. 2.5-3 hours of the full CHP thermal output. This equates to a volume requirement of $20~\text{m}^3$.

It is assumed that two thermal stores will be fitted in order to maintain good thermal stratification without massive height requirements. An indicative layout of the energy centre is shown in Figure 17 and Appendix 1.

The Code of Practice for Heat Networks¹⁰ requires a minimum aspect ratio of 2:1 excluding any supports or fittings. The reason behind this constraint is that high tanks with small diameters can preserve the hot water stratified in different temperature layers which allows more heat to be stored with less heat losses.

A common solution in spaces with limited heights is to increase the number of tanks connected in series. In the present case, instead of two tanks of 3.7 m each, three tanks of 2.5 m height would be an alternative.

Space for equipment required for a future connection to a district heating transmission line, such as a heat exchanger, has been included. This was sized to be 4 m by 2 m based on engineering experience.

¹⁰ CP1: Heat Networks: Code of Practice for the UK

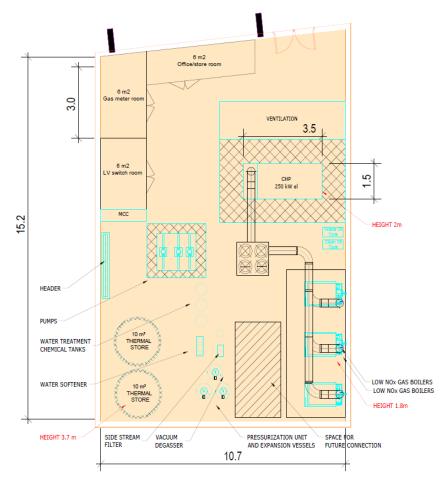


Figure 17: Energy centre layout

7.4 Environmental Considerations

CHP has relatively little visual impact when installed in a dedicated energy centre. However, there could be noise and air quality impacts.

Noise can be mitigated by the enclosure of the energy centre and reduced operation overnight.

Emissions from CHP engines depend mainly on the design and efficiency of the plant and the fuel characteristics. As with most combustion plants, the main emissions are NO_x , CO, volatile organic compounds (VOCs), and CO_2 . Modifications of the engine to reduce certain pollutants can lead to an increase of other emissions. Engine selection is location specific and all of these factors need to be considered.

The impact of the emissions in the local area can be modified by adequate chimney heights (allowing a better dispersion of the pollutants) or with the installation of Selective Non-Catalytic Reduction (SNCR) or Selective Catalytic Reduction (SCR) equipment. To comply with the London Plan the CHP unit at the proposed development must achieve target NOx levels that are less than 95 mgNOx/Nm³. The proposed CHP unit would achieve this target through the use of a 3-way Catalytic Converter, which would reduce the unit's NOx emissions rate to less than 50 mgNOx/Nm³. Modifications to allow lower NOx levels are an option, if the updated London plans requires further reduction to meet those of ultra-low NOx boilers. The data sheet for this CHP plant can be found in the Appendix 2.

Noise can sometimes be an issue in residential building especially if the plant room is on an upper floor with occupied dwellings underneath it. The noise output from the proposed CHP plant would be 65 dB(A) at 1m. This level of noise should not be an issue especially if the plant is located in a basement plant room and only runs between 7am and Midnight. If the plant room is to be located on an upper floor it is recommended that an acoustic mat be placed under the CHP unit to reduce noise from vibration.

The Peaking Boilers proposed for this site achieve NOx emissions levels of 32.5mgNOx/kWh. The target level required under the London Plan is 40mgNOx/kWh and therefore these boilers would be compliant.

The chimney height is also relevant in terms of dispersion of the pollutants. The Local Authority must approve the chimney height during the planning permission process under the Clean Air Act 1993. Dispersion modelling will be required in the planning process. A1 Flues have been contacted by Ramboll and have provided outline guidance on the required flue heights for this proposed development. As the overriding requirements of Clause 25 of the Clean Air Act Memorandum are not applicable, the flue should terminate at a minimum of 1.8m above any structure within a 14.7m (5U) radius of the flue. Concluding to a height of 47.3m from ground level.

<u>Clean Air Act Memorandum</u> <u>Clause 25.</u>

Overriding minimum requirements for chimney height

The final corrected chimney height determined by the above procedures (method of calculation outlined in the CAAM) should be checked against the following requirements. If it does not satisfy them it should be increased appropriately:

- a. a chimney should terminate at least 3m above the level of any adjacent area to which there is general access (ie ground level, roof areas or adjacent openable windows)
- b. a chimney should never be less than the calculated uncorrected chimney height.
- a chimney should never be less than the height of any part of an attached building within a distance of 5U.

Figure 18: Clean Air Act Memorandum Extract

7.5 Be Clean Results

7.5.1 Residential Buildings

The calculated regulated domestic CO_2 emissions for the "be clean" case are presented in Figure 19. The SAP calculations can be seen in Appendix 3.

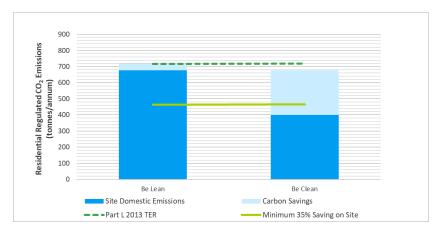
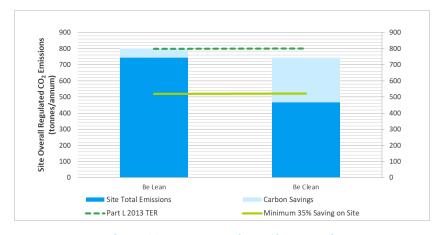


Figure 19: Domestic Be Clean Results


The results show that incorporation of a CHP district heating scheme across the site would be a sufficient measure to reduce the annual CO_2 emissions to a level acceptable under London Plan regulations.

The estimated carbon savings would be **277 tonnes per annum** and the emissions are **44% below the building regulations TER**, therefore meeting the London Plan requirement with a 9% margin.

7.5.2 Overall Site

The results from the IES modelling for the commercial buildings were added to the ones of the residential properties and the results are illustrated below. The BRUKL sheets can be found in Appendix 4.

The effect of the CHP to the commercial emissions was found to be minimal from the IES analysis, occurring due to the small heating energy requirements to the overall energy demand. The scheme's total emissions **42% below the building regulations** and so meet the London Plan requirement with a 7% margin.

Figure 20: Non-Domestic Be Clean Results

8. BE GREEN

The results presented in section 7 demonstrate that the "be clean" measure of CHP would be sufficient to meet GLA regulations. However, it is considered good practice to follow the full energy strategy methodology to assess the potential for further savings through the use of renewable technologies.

In accordance with the GLA hierarchy (be lean, be clean, be green) Ramboll has identified that the proposed development could incorporate the following renewable energy technologies:

- Wind turbines (in suitable locations);
- Solar thermal collectors;
- Ground Source Heat Pumps;
- Water Source Heat pumps; and
- PV panels.

A high-level options appraisal has been undertaken to consider the application of renewable technologies at the proposed development.

8.1 Technology Appraisal

8.1.1 Wind Turbines

Wind turbines harness the power of the wind to produce electricity through circular motion. They can produce electricity without carbon dioxide emissions, and range in outputs from watts to megawatts.

Recently the findings of the Warwick Wind Trials have found that even after sufficient adjustment of the usually referenced NOABL wind data to account for an urban setting, the actual output has been found to be half the electrical energy claimed by turbine manufacturers.

Figure 21: Photograph of Wind Turbine (Ramboll Image Bank)

Wind turbines are not considered as an efficient option in an urban area due to low wind profiles and turbulence, leading to very low energy yields. Wind turbines are also associated with visual and acoustic impacts. It is therefore considered that wind turbines would not be appropriate for the proposed development.

8.1.2 Solar Thermal Collectors

Solar thermal collectors convert the sun's radiation into heat, which is transferred to a medium such as a water/glycol mix (to prevent freezing). Solar water heating is usually used for hot water generation, as this is a year-round demand. It is not normally used for space heating as the greatest demand is in winter, when the sun's rays are weakest. Annual incident solar radiation in the London area is about 1,100 kWh. Ideally the collectors should be mounted on a South–facing roof, although southeast and southwest will also function successfully. The collectors need to be inclined at between 10-60° from horizontal – with 35° being the optimum.

Figure 22: Photograph of Solar Thermal Array (Ramboll Image Bank Courtesy of Scanpix)

Solar hot water uses a heat collector, usually as panels on the roof in which liquid is heated by the sun. The fluid is used to heat up water that is stored in either a separate hot water cylinder or a twin hot water cylinder. There are two types of solar collector: flat plate and evacuated tubes, the latter being generally more efficient. There are a large number of manufacturers and suppliers, and an examination of products from a number of manufacturers suggests that the average output is approximately 600 kWh/m^2 . Capital costs are approximately $£600/\text{m}^2$. Maintenance costs vary and mainly relate to replacement of parts.

Solar thermal has been discounted for this proposed development due to:

- It's limited effectiveness in high rise buildings;
- The requirement of thermal storage within the flats; and
- The effect of the high cost on the payback period.

8.1.3 Ground Source Heat Pump (GSHP)

GSHPs are a Low Carbon Technology, not a renewable system, as they require electricity to run the pumps and extract the energy from the ground. A minimum coefficient of performance (CoP) of 2.2 is required to start carbon saving, with a recommended design CoP of at least 3.5 to make the system cost-effective. For the proposed development a vertical closed loop system would be required. The system comprises of vertically drilled boreholes, usually up to 100 to 150 m deep.

Although this technology may be possible for the site, it would not be recommended in an urban area where land area is scarce and the costs and complexity of digging or drilling to install the required pipework would be excessive.

8.1.4 Water Source Heat Pump (WSHP)

Heat pumps can deliver heat with approximately three times the energy value of the electricity fed in to operate the pump and offer a way of upgrading low-grade heat with low carbon emissions. However, on district heating networks the heat pump system is usually assisted by a higher heat grade technology in order to achieve higher flow temperatures (65 $^{\circ}$ C to 70 $^{\circ}$ C). Even with ammonia heat pumps temperatures higher than 65 $^{\circ}$ C have a negative impact on the performance of the heat pump.

As part of this energy assessment, WSHP technology supplied by the River Thames was considered.

Past experiences demonstrate that when there is gas available on-site, WSHP technology is often financially uncompetitive when compared to technologies such as gas CHP, which also benefits from electricity sales.

This is particularly relevant in this case due to the fact that the proposed development is 200 m away from the River Thames at its closest and the resulting infrastructure costs would be high.

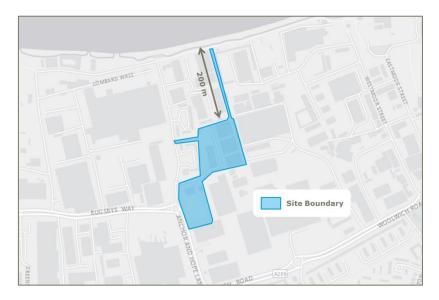


Figure 23: Site Boundary and Indication of Distance to River Thames

The plans for the proposal development include provision for a pathway linking the proposed development to the River, which may present the opportunity for location of pipes. If this cannot be utilised, then another route through privately owned land would have to be sought which could present a number of commercial and legal challenges.

Additional challenges would include the requirement for inlet and outlet pipes to be installed in the river. Return temperatures higher than that of the River are likely to have environmental implications and an environmental study would have to be conducted into the effect of potential temperature changes.

Due to the financial and commercial challenges associated with this technology, it was not considered to be a viable energy source for the proposed development.

8.1.5 Solar PV

Photovoltaic cells (PV cells) convert solar radiation directly into DC electricity. PV cells use energy from light to create electricity: when light shines on a PV cell it creates an electric field across the layers causing electricity to flow. Individual PV cells only provide a small amount of electricity, so they are generally grouped together into a module for convenience.

A key advantage of PV cells in the urban environment is their potential to be integrated into the fabric of the building. Maintenance costs are predicted to be low, requiring occasional cleaning and maintaining/replacing tiles and inverters as necessary. There can be low land take associated with the technology provided the panels can be mounted on the roofs of buildings.

The Architect was asked to allocate the maximum floor space available for PVs. The full roof space of several buildings for the use of PV panels (Buildings D, E, F, G, H, J, M, N and O) was thus provided. Building J was not considered due to the shadow from building K.

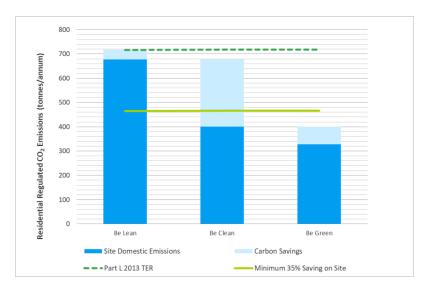
From this available roof area, a design was made in the PV software HelioScope to determine the total capacity if the PVs are facing Southwards (165°). The outputs include a shadowing report, power and annual production figures and source of system loss. It was shown that the maximum number of PV modules that can be fitted are 840, yielding 1,377 \mbox{m}^2 of PV area.

The PV layout can be seen in Figure 24 while the detailed analysis can be found Appendix 4.

Figure 24: HelioScope detailed layout

8.2 Be Green Results

The proposed PV panel configuration and performance is based on the analysis carried out in HelioScope. The PV areas are then split between residential and commercial buildings and incorporated into a SAP compliant software for the residential. The PV characteristics can be found below


- 1.64 m² panels of 245 Wp, average peak output of 150 W/m²;
- 205 kWp capacity;
- Annual production of 178.5 MWh and performance ratio of 82.3%;
- South facing, 10° angle (as per previous London projects);
- · None or very little shading; and
- 867 full load operating hours.

8.2.1 Residential Buildings

The calculated regulated domestic CO_2 emissions for the "be green" case is presented in **Error! Reference source not found.** It was assumed that 90% of the capacity will be assigned to residential properties. The capacity was then split between each flat based on the individual to total floor area ratio and imported into SAP.

The results show the proposed PV system reduces the annual CO₂ emissions by a further 73 tonnes (10%). The estimated carbon value would be 54% below the building regulations TER and would meet the London Plan requirement with a 19% margin.

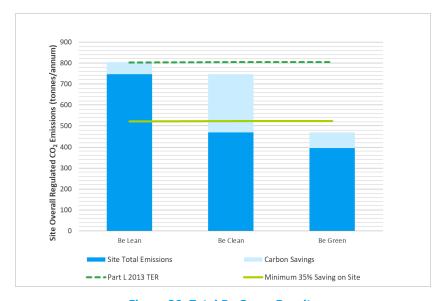

However, the "be green" measures are not suitable to meet the zero carbon homes requirement and therefore a carbon offsetting payment is likely to be required as outlined in section 10.

Figure 25: Domestic Be Green Results

8.2.2 Overall Site

The Zero carbon goal applies to residential buildings until 2019, so the non-domestic properties are able to achieve the building regulations with the CHP network. Overall emissions are **reduced by 9%**, leading to emissions being **51% below the building regulations TER** and thus meets the London Plan requirement with a 16% margin. Figure 26 illustrates overall "be green" emissions.

Figure 26: Total Be Green Results

9. CONCLUSIONS AND RECOMMENDATIONS

A summary of the results for each scenario is presented in Table 5 for domestic buildings:

Table 5: Regulated Domestic Carbon Dioxide Savings from SAP Modelling

	Regulated Domestic Carbon Dioxide Savings			
	Tonnes CO ₂ per Annum	Percentage Reduction		
Savings from Energy Demand Reduction ("Be Lean")	40	5.6%		
Savings from CHP ("Be Clean")	277	38.6%		
Savings from Solar PV ("Be Green")	73	10.2%		
Cumulative On Site Savings	390	54.3%		
Annual Savings from Off-set Payment	328			
	Offset Payment			
Cumulative Savings for Off-set Payment London Plan 2016	£19,655			
Cumulative Savings for Off-set Payment Draft London Plan 2017	£31,120			

The remaining CO_2 emissions will result in a required off-setting contribution of approximately **£19,655 per annum** for a 30-year period to meet Zero Carbon regulations. This payment will need to be

made in order to adhere to London Plan Policy 5.2. According to the Draft London Plan issued in 2017 and which is still under consultation, due to the increased offset payment tariff this figure could increase to £31,120 per annum.

A summary of the results for non-domestic buildings is presented in Table 6.

Table 6: Non-Domestic Results Summary

	Regulated Commercial Carbon Dioxide Savings		
	Tonnes CO ₂ per Annum	Percentage Reduction	
Savings from Energy Demand Reduction ("Be Lean")	17	19.9%	
Savings from CHP ("Be Clean")	18	20.4%	
Savings from Solar PV ("Be Green")	1	1.5%	
Cumulative On Site Savings	35	41.7%	
Annual Savings from Off-set Payment	68		
	Offset Payment		
Cumulative Savings for Off-set Payment London Plan 2016	£4,071		
Cumulative Savings for Off-set Payment Draft London Plant 2017	£6,446		

Therefore, the total offset payment is £23,726 per annum for a 30-year period to meet Zero Carbon regulations for both residential and commercial properties according to the 2016 London Plan.

The total regulated emissions are presented in Figure 27.

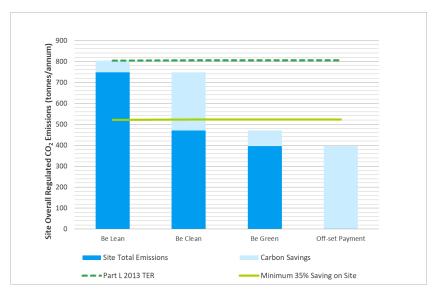


Figure 27: Total Energy Hierarchy Targets

The key observations from the assessment of the modelling scenarios are as follows:

- A centralised gas boiler system supplying heat to dwellings designed to the minimum fabric efficiency standards is not an appropriate energy strategy to meet either the building regulations target emissions rate or the London Plan requirement.
- A centralised gas boiler system supplying heat to dwellings designed with best practice fabric and ventilation standards is sufficient to meet the building regulations TER, but not the London Plan requirement; therefore it is not an appropriate strategy for energy supply.
- A site-wide heat network supplied by a gas CHP engine in combination with best practice fabric and ventilation standards is a suitable solution to meet both national buildings regulations and the London Plan requirement of reducing CO₂ emissions to 35% below Part L.
- A roof-mounted solar PV array could supply sufficient electricity to reduce the regulated residential CO₂ emissions by a further 4% of the target emission rate.

It is recommended that a heat network supplied by gas CHP and supported by solar PV is considered as the preferred option by the Applicant.

Charlton Riverside

APPENDIX 1 - ENERGY CENTRE LAYOUT

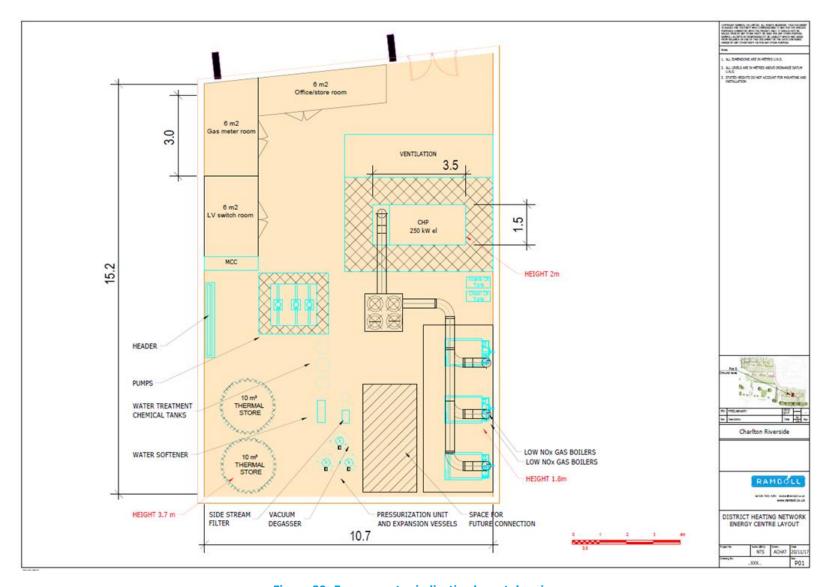


Figure 29: Energy centre indicative layout drawing

APPENDIX 2 - HEATING PLANT DATA SHEETS

Detacland of the	V-0250MA-070-NG-50-500_L6				 ○ VEOLIA			
Datasheet ref. no.	TDR120250	87090BHL						
Performance & Efficiency	Units	100	%	75	%	50	%	
Electrical Power (1)	kW	250	39.7%	188	39.1%	125	37.09	
Energy Input (2)	kW	629	-	480	-	338		
Fotal Useable Energy	kW	541	86.0%	411	85.6%	290	85.89	
Fotal Useable Heat Out (3)	kW	291	46.3%	223	46.5%	165	48.89	
Heat output from Engine (3)	kW	137	21.8%				-	
Heat output from Intercooler (3)	kW	23	3.7%					
Heat Output from Exhaust gases @ temp (a)	kW	153 42	24.3%				+	
Radiated & unaccounted for heat ₍₄₎	kW	42	6.7%					
Fuel (12) / Methane number (13)	T - T		Natural Gas			>80		
Range of heating value (LHV): design / operation (5)	kJ/Nm3		36000		+	Not specified		
Fuel Mass Flow	kg/hr	4	9.2			riot op comea		
Fuel Volume Flow (5)	Nm3/hr		1.3					
Gas Supply Pressure Range (dynamic)	mbar			30-70				
Maximum gas pressure fluctuation (6)	%			10				
Exhaust	1 %							
Exhaust gas temp before cooler (7)	°C	4	97	33000				
Exhaust Gas Temperature after H/E	(a) °C		204	120				
Exhaust Gas Mass Flow (wet) Exhaust Gas Volume Flow (wet) (5)	kg/hr Nm³/hr		294					
Exhaust Gas Volume Flow (wet) @ temp (a)	m³/hr		128					
Catalyst Type	- 111 7111	12	120	None				
Nox emissions (dry,5% O2) (5)	mg/Nm³			500				
Max. exhaust back pressure: after engine / after heat exchanger	mbar		50			18		
Secondary Water Circuit								
Secondary Water in temp (0% glycol)	°C			70				
Secondary water outlet temperature	°C	9	0.0					
Secondary Water Flow Minimum Secondary circuit max. operating press.	m³/hr bar			16.6 6				
Pressure drop across plate H/E	kPa			40				
ntercooler circuit (LT)	16, 6			1.0				
ntercooler Coolant in temp (30% glycol) (8)	°C			38				
ntercooler Coolant out temp (30% glycol) (8)	°C	4	1.0					
ntercooler Coolant flow min. (30% Glycol) (9)	m³/hr			7.6				
ntercooler circuit max. operating pressure (10)	bar			3				
Enclosure								
Enclosure type	- Nm³/hr			Canopy				
Ventilation Air Volume flow (inc. combustion air) (11)	18111 7111			9473				
/oltage	T V T			400				
requency	Hz			50				
Current per phase @ PF0.9 & 100% CHP duty	Α			401				
Miscellaneous				NAAN.				
Engine Manufacturer Engine type	+ - +			MAN A306				
Generator Manufacturer	 - 			LEROY SOM	ER			
Generator type	-			LSA 47.2 S4/				
Neights & Dimensions					2			
Weight genset only (wet)	kg			4330 800				
Neight canopy only inc. fans Neight complete canopied unit (wet)	kg kg			5130				
Weight complete containerised unit (wet)	kg			N/A				
Dimensions & termination points								
Tolerances								
1) Alternator gross power at nominal voltage & power factor = 1.0 2) +5%, ref. ISO 3046-1		·						
2) +5%, 161. ISO 3046-1 3) +/- 8%			ed on an engine in nev maintenance requirem		nement in efficie	ncy over the serv	ice life is	
4) Guidance only				100 may 100 ma				
5) Where normal (N) conditions are 0°C, 101.325 Pa	Unless otherwis	se specified, all da	ata is based on full end	ine load with the r	espective indica	ted media temper	atures an	
6) Ref. ISO 15550	subject to techn	nical improvemen	ts. The generator outp	ut measured at the	generator term	inals serves as th	e basis fo	
7) +/- 8%, Ref. ISO 15550 8) +/- 2°C, Ref. ISO 15550			I power and efficiency n to the 'Technical inst			ons. The operatin	g fluids ar	
9) +/- 10 %, ref. ISO 15550, adj, for coolant 30% glycol,70% water	piant system la	yout must comorr	into the Technical INSI	ruoliona di vedila	OHF.			
10) +/- 5%, Ref. ISO 15550	Power reductio	n due to installation	on at altitude > 300m a	.s.l. and/or air suc	tion temperature	> 25°C shall be o	determine	
11) Where normal (N) conditions are 25°C, 101.325 Pa, Rel. humidity 30%			rding "TI-049 Load rec		F			
 Fuel quality requirements are defined by the engine mfg. Min. methane number as defined by the engine mfg. 								

Figure 30: CHP Engine data sheet

Charlton Riverside

APPENDIX 3 - SAP WORKSHEETS

BE LEAN

Table 7: Be Lean Calculation Details

				DER	TER	DFEE	TFEE	TFA
Total number of flats	Number of flats	Dwelling Type	Location	kg CO₂/m²/year	kg CO ₂ /m²/year	kWh/m²/year	kWh/m²/year	m²
	0		Ground	18	20	35	39	39
144	126	Studio	Mid Floor	17	18	27	31	39
	18		Roof	18	20	35	39	39
	0		Ground	17	18	35	38	50
202	182	1 Bed	Mid Floor	15	16	27	30	50
	20		Roof	17	18	35	38	50
	31		Ground	16	16	34	38	66
291	229	2 Bed Apt	Mid Floor	14	15	26	29	66
	31		Roof	16	16	34	37	66
	11		Ground	16	16	34	38	79
11	0	2 Bed Townhouses	Mid Floor	14	15	26	29	79
	0		Roof	16	16	34	37	79
	16		Ground	15	15	34	38	80
108	79	3 Bed Apt	Mid Floor	13	14	26	29	80
	13		Roof	15	15	34	37	80
	12		Ground	15	15	34	38	93

				DER	TER	DFEE	TFEE	TFA
Total number of flats	Number of flats	Dwelling Type	Location	kg CO₂/m²/year	kg CO₂/m²/year	kWh/m²/year	kWh/m²/year	m²
12	0	3 Bed Townhouses	Mid Floor	13	14	26	29	93
	0		Roof	15	15	34	37	93
	1		Ground	14	15	35	38	94
3	2	4 Bed Apt	Mid Floor	12	13	27	30	94
	0		Roof	14	14	34	37	94

Table 8: Be Lean Summary

Total Floor Area	m^2	
Average TER	kg CO ₂ /m²/year	
Average DER	kg CO ₂ /m²/year	
Average DFEE	kWh/m²/year	
Average TFEE	kWh/m²/year	
Compliance		
% Improvement DER/TER		
% Improvement DFEE/TFEE		

45,829	
15.66	
14.78	
28.44	
31.38	
PASS	
6%	
9%	

BE CLEAN

Table 9: Be Clean Calculation Details

				DER	TER	DFEE	TFEE	TFA
Total number of flats	Number of flats	Dwelling Type	Location	kg CO ₂ /m²/year	kg CO₂/m²/year	kWh/m²/year	kWh/m²/year	m²
	0		Ground	10	20	35	39	10
144	126	144	Mid Floor	10	18	27	31	10
	18		Roof	10	20	35	39	10
	0		Ground	10	18	35	38	10
202	182	202	Mid Floor	9	16	27	30	9
	20		Roof	10	18	35	38	10
	31		Ground	9	16	34	37	9
291	229	291	Mid Floor	8	15	26	29	8
	31		Roof	9	16	34	37	9
	11		Ground	9	16	34	37	9
11	0	11	Mid Floor	8	15	26	29	8
	0		Roof	9	16	34	37	9
	16		Ground	9	15	34	38	9
108	79	108	Mid Floor	8	14	26	29	8
	13		Roof	9	15	34	37	9
	12		Ground	9	15	34	38	9

				DER	DER TER		TFEE	TFA
Total number of flats	Number of flats	Dwelling Type	Location	kg CO ₂ /m²/year	kg CO ₂ /m²/year	kWh/m²/year	kWh/m²/year	m²
12	o	12	Mid Floor	8	14	26	29	8
	0		Roof	9	15	34	37	9
	1		Ground	8	15	35	38	8
3	2	3	Mid Floor	8	13	27	30	8
	0		Roof	8	14	34	37	8

Table 10: Be Clean Summary

Total Floor Area	m²	45,829
Average TER	kg CO ₂ /m²/year	15.67
Average DER	kg CO ₂ /m²/year	8.74
Average DFEE	kWh/m²/year	28.41
Average TFEE	kWh/m²/year	31.36
Compliance		PASS
% Improvement DER/TER		44%
% Improvement DFEE/TFEE		9%

BE GREEN

Table 11: Be Green Calculation Details

				DER	TER	DFEE	TFEE	TFA
Total number of flats	Number of flats	Dwelling Type	Location	kg CO₂/m²/year	kg CO₂/m²/year	kWh/m²/year	kWh/m²/year	m²
	0		Ground	8	20	35	39	39
144	126	Studio	Mid Floor	8	18	27	31	39
	18		Roof	9	20	35	39	39
	0		Ground	8	18	35	38	50
202	182	1 Bed	Mid Floor	7	16	27	30	50
	20		Roof	8	18	35	38	50
	31		Ground	8	16	34	37	66
291	229	2 Bed Apt	Mid Floor	7	15	26	29	66
	31		Roof	8	16	34	37	66
	11		Ground	8	16	34	37	79
11	0	2 Bed Townhouses	Mid Floor	7	15	26	29	79
	0		Roof	8	16	34	37	79
	16		Ground	7	15	34	38	80
108	79	3 Bed Apt	Mid Floor	6	14	26	29	80
	13		Roof	7	15	34	37	80
	12		Ground	7	15	34	38	93

				DER	TER	DFEE	TFEE	TFA
Total number of flats	Number of flats	Dwelling Type	Location	kg CO ₂ /m²/year	kg CO ₂ /m²/year	kWh/m²/year	kWh/m²/year	m²
12	0	3 Bed Townhouses	Mid Floor	6	14	26	29	93
	0		Roof	7	15	34	37	93
	1		Ground	7	15	35	38	94
3	2	4 Bed Apt	Mid Floor	6	13	27	30	94
	0		Roof	7	14	34	37	94

Table 12: Be Green Summary

Total Floor Area	m²	
Average TER	kg CO₂/m²/year	
Average DER	kg CO₂/m²/year	
Average DFEE	kWh/m²/year	
Average TFEE	kWh/m²/year	
Compliance		
% Improvement DER/TER		
% Improvement DFEE/TFEE		

45,829

15.67

7.15

28.41

31.36 **PASS**

54% 9%

APPENDIX 4 - BRUKL AND DER SHEETS

BRUKL Output Document

Compliance with England Building Regulations Part L 2013

Project name

Charlton Riverside-BS-OFFICE-Be Lean

As designed

Date: Fri Oct 12 15:21:58 2018

Administrative information

Building Details

Address: Address 1, City, Postcode

Certification tool

Calculation engine: Apache

Calculation engine version: 7.0.10

Interface to calculation engine: IES Virtual Environment

Interface to calculation engine version: 7.0.10

BRUKL compliance check version: v5.4.b.0

Owner Details

Name: Name

Telephone number: Phone

Address: Street Address, City, Postcode

Certifier details

Name: Name

Telephone number: Phone

Address: Street Address, City, Postcode

Criterion 1: The calculated CO2 emission rate for the building must not exceed the target

CO ₂ emission rate from the notional building, kgCO ₂ /m ² .annum	21.1
Target CO ₂ emission rate (TER), kgCO ₂ /m ² .annum	21.1
Building CO ₂ emission rate (BER), kgCO ₂ /m ² .annum	16.9
Are emissions from the building less than or equal to the target?	BER =< TER
Are as built details the same as used in the BER calculations?	Separate submission

Criterion 2: The performance of the building fabric and fixed building services should achieve reasonable overall standards of energy efficiency

Values which do not achieve the standards in the Non-Domestic Building Services Compliance Guide and Part L are displayed in red.

Building fabric

Element	U _{a-Limit}	Ua-Calc	U i-Calc	Surface where the maximum value occurs*
Wall**	0.35	0.18	0.18	LV000014:Surf[6]
Floor	0.25	0.13	0.13	LV000000:Surf[0]
Roof	0.25	-	-	UNKNOWN
Windows***, roof windows, and rooflights	2.2	1.43	1.43	LV000014:Surf[0]
Personnel doors	2.2	-	-	No Personnel doors in building
Vehicle access & similar large doors	1.5	-	-	No Vehicle access doors in building
High usage entrance doors	3.5	-	-	No High usage entrance doors in building
11 11 11 11 11 11 11 11 11 11 11	11/ 21/17	1		

U_{a-Limit} = Limiting area-weighted average U-values [W/(m²K)]

 $U_{a\text{-Calc}}$ = Calculated area-weighted average U-values [W/(m²K)]

U_{i-Calc} = Calculated maximum individual element U-values [W/(m²K)]

N.B.: Neither roof ventilators (inc. smoke vents) nor swimming pool basins are modelled or checked against the limiting standards by the tool.

Air Permeability	Worst acceptable standard	This building
m ³ /(h.m ²) at 50 Pa	10	3

^{*} There might be more than one surface where the maximum U-value occurs.

^{**} Automatic U-value check by the tool does not apply to curtain walls whose limiting standard is similar to that for windows.

^{***} Display windows and similar glazing are excluded from the U-value check.

Building services

The standard values listed below are minimum values for efficiencies and maximum values for SFPs. Refer to the Non-Domestic Building Services Compliance Guide for details.

Whole building lighting automatic monitoring & targeting with alarms for out-of-range values	YES
Whole building electric power factor achieved by power factor correction	>0.95

1- Charlton Riverside Heating and Cooling

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(I/s)]	HR efficiency
This system	0.86	4	0	0	0.85
Standard value	0.91*	3.2	N/A	N/A	0.5
Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system YES					
* Standard shown is for gas single boiler systems <=2 MW output. For single boiler systems >2 MW or multi-boiler systems, (overall) limiting efficiency is 0.86. For any individual boiler in a multi-boiler system, limiting efficiency is 0.82.					

[&]quot;No HWS in project, or hot water is provided by HVAC system"

Local mechanical ventilation, exhaust, and terminal units

ID	System type in Non-domestic Building Services Compliance Guide
Α	Local supply or extract ventilation units serving a single area
В	Zonal supply system where the fan is remote from the zone
С	Zonal extract system where the fan is remote from the zone
D	Zonal supply and extract ventilation units serving a single room or zone with heating and heat recovery
Е	Local supply and extract ventilation system serving a single area with heating and heat recovery
F	Other local ventilation units
G	Fan-assisted terminal VAV unit
Н	Fan coil units
I	Zonal extract system where the fan is remote from the zone with grease filter

Zone name		SFP [W/(I/s)]						UD officiones				
IC	O of system type	Α	В	С	D	Е	F	G	Н	I	HR efficiency	
	Standard value	0.3	1.1	0.5	1.9	1.6	0.5	1.1	0.5	1	Zone	Standard
WC		-	-	0.4	-	-	-	-	-	-	-	N/A
Office 1F - S		-	1.1	0	-	-	-	-	-	-	-	N/A
Office 1F - N		-	1.1	0	-	-	-	-	-	-	-	N/A
Office 1F - WC		-	-	0.4	-	-	-	-	-	-	-	N/A
Office 1F - E1		-	1.1	0	-	-	-	-	-	-	-	N/A
Office 1F - E2		-	1.1	0	-	-	-	-	-	-	-	N/A
Office 1F - W2		-	1.1	0	-	-	-	-	-	-	-	N/A
Office 1F - W1		-	1.1	0	-	-	-	-	-	-	-	N/A
Office-S		-	1.1	0	-	-	-	-	-	-	-	N/A
Office-W		-	1.1	0	-	-	-	-	-	-	-	N/A
Office-W		-	1.1	0	-	-	-	-	-	-	-	N/A

General lighting and display lighting	Lumino	us effic	acy [lm/W]	
Zone name	Luminaire	Lamp	Display lamp	General lighting [W]
Standard value	60	60	22	
WC	-	120	-	50
Office 1F - S	120	-	-	453
Office 1F - N	120	-	-	460

General lighting and display lighting	Lumino	ous effic	acy [lm/W]	
Zone name	Luminaire	Lamp	Display lamp	General lighting [W]
Standard value	60	60	22	
Office 1F - WC	-	120	-	49
Office 1F - E1	120	-	-	256
Office 1F - E2	120	-	-	249
Office 1F - W2	120	-	-	191
Office 1F - W1	120	-	-	209
Office-S	120	-	-	378
Office-W	120	-	-	446
Office-W	120	-	-	437

Criterion 3: The spaces in the building should have appropriate passive control measures to limit solar gains

Zone	Solar gain limit exceeded? (%)	Internal blinds used?
WC	N/A	N/A
Office 1F - S	NO (-17.7%)	YES
Office 1F - N	NO (-31.1%)	YES
Office 1F - WC	N/A	N/A
Office 1F - E1	NO (-21.8%)	YES
Office 1F - E2	NO (-4.6%)	YES
Office 1F - W2	NO (-10.9%)	YES
Office 1F - W1	NO (-8.4%)	YES
Office-S	NO (-3.3%)	YES
Office-W	NO (-5.5%)	YES
Office-W	NO (-30.3%)	YES

Criterion 4: The performance of the building, as built, should be consistent with the calculated BER

Separate submission

Criterion 5: The necessary provisions for enabling energy-efficient operation of the building should be in place

Separate submission

EPBD (Recast): Consideration of alternative energy systems

Were alternative energy systems considered and analysed as part of the design process?	YES
Is evidence of such assessment available as a separate submission?	YES
Are any such measures included in the proposed design?	YES

Technical Data Sheet (Actual vs. Notional Building)

Building Global Parameters

	Actual	Notional
Area [m²]	587.5	587.5
External area [m²]	819.4	819.4
Weather	LON	LON
Infiltration [m³/hm²@ 50Pa]	3	3
Average conductance [W/K]	745.96	486.44
Average U-value [W/m²K]	0.91	0.59
Alpha value* [%]	10	10

^{*} Percentage of the building's average heat transfer coefficient which is due to thermal bridging

Building Use

% Area Building Type

A1/A2 Retail/Financial and Professional services

A3/A4/A5 Restaurants and Cafes/Drinking Est./Takeaways

100 **B1 Offices and Workshop businesses**

B2 to B7 General Industrial and Special Industrial Groups

B8 Storage or Distribution

C1 Hotels

C2 Residential Institutions: Hospitals and Care Homes

C2 Residential Institutions: Residential schools

C2 Residential Institutions: Universities and colleges

C2A Secure Residential Institutions

Residential spaces

D1 Non-residential Institutions: Community/Day Centre

D1 Non-residential Institutions: Libraries, Museums, and Galleries

D1 Non-residential Institutions: Education

D1 Non-residential Institutions: Primary Health Care Building D1 Non-residential Institutions: Crown and County Courts D2 General Assembly and Leisure, Night Clubs, and Theatres

Others: Passenger terminals Others: Emergency services

Others: Miscellaneous 24hr activities

Others: Car Parks 24 hrs Others: Stand alone utility block

Energy Consumption by End Use [kWh/m²]

	Actual	Notional
Heating	27.25	15.19
Cooling	10.51	9.5
Auxiliary	4.48	2.78
Lighting	5.27	21.64
Hot water	3.42	3.07
Equipment*	41.32	41.32
TOTAL**	50.94	52.18

^{*} Energy used by equipment does not count towards the total for consumption or calculating emissions.

** Total is net of any electrical energy displaced by CHP generators, if applicable.

Energy Production by Technology [kWh/m²]

	Actual	Notional
Photovoltaic systems	0	0
Wind turbines	0	0
CHP generators	0	0
Solar thermal systems	0	0

Energy & CO₂ Emissions Summary

	Actual	Notional
Heating + cooling demand [MJ/m ²]	195.89	176.71
Primary energy* [kWh/m²]	98.09	123.81
Total emissions [kg/m²]	16.9	21.1

^{*} Primary energy is net of any electrical energy displaced by CHP generators, if applicable.

F	HVAC Systems Performance											
Sys	System Type Heat dem											
[ST] Split or m	ulti-split sy	stem, [HS]	LTHW boile	er, [HFT] Na	tural Gas, [CFT] Electr	icity				
	Actual 82.7 113.2 27.2 10.5 4.5 0.84 2.99 0.86 4											
	Notional	47.1	129.6	15.2	9.5	2.8	0.86	3.79				

Key to terms

Heat dem [MJ/m2] = Heating energy demand
Cool dem [MJ/m2] = Cooling energy demand
Heat con [kWh/m2] = Heating energy consumption
Cool con [kWh/m2] = Cooling energy consumption
Aux con [kWh/m2] = Auxiliary energy consumption

Heat SSEFF = Heating system seasonal efficiency (for notional building, value depends on activity glazing class)

Cool SSEER = Cooling system seasonal energy efficiency ratio

Heat gen SSEFF = Heating generator seasonal efficiency

Cool gen SSEER = Cooling generator seasonal energy efficiency ratio

ST = System type
HS = Heat source
HFT = Heating fuel type
CFT = Cooling fuel type

Key Features

The Building Control Body is advised to give particular attention to items whose specifications are better than typically expected.

Building fabric

Element	U i-Тур	U _{i-Min}	Surface where the minimum value occurs*
Wall		0.18	LV000014:Surf[6]
Floor	0.2	0.13	LV000000:Surf[0]
Roof		-	UNKNOWN
Windows, roof windows, and rooflights 1.9		1.43	LV000014:Surf[0]
Personnel doors 1.5		-	No Personnel doors in building
Vehicle access & similar large doors 1.4		-	No Vehicle access doors in building
High usage entrance doors 1.5		-	No High usage entrance doors in building
U _{i-Typ} = Typical individual element U-values [W/(m²K)]			U _{i-Min} = Minimum individual element U-values [W/(m²K)]
* There might be more than one surface where the r	ninimum L	J-value oc	curs.

Air Permeability	Typical value	This building
m³/(h.m²) at 50 Pa	5	3

BRUKL Output Document

Compliance with England Building Regulations Part L 2013

Project name

Charlton Riverside-BS-OFFICE-Be Clean

As designed

Date: Fri Oct 12 15:25:42 2018

Administrative information

Building Details

Address: Address 1, City, Postcode

Certification tool

Calculation engine: Apache

Calculation engine version: 7.0.10

Interface to calculation engine: IES Virtual Environment

Interface to calculation engine version: 7.0.10

BRUKL compliance check version: v5.4.b.0

Owner Details

Name: Name

Telephone number: Phone

Address: Street Address, City, Postcode

Certifier details

Name: Name

Telephone number: Phone

Address: Street Address, City, Postcode

Criterion 1: The calculated CO2 emission rate for the building must not exceed the target

CO ₂ emission rate from the notional building, kgCO ₂ /m ² .annum	21.1
Target CO ₂ emission rate (TER), kgCO ₂ /m ² .annum	21.1
Building CO ₂ emission rate (BER), kgCO ₂ /m ² .annum	16.8
Are emissions from the building less than or equal to the target?	BER =< TER
Are as built details the same as used in the BER calculations?	Separate submission

Criterion 2: The performance of the building fabric and fixed building services should achieve reasonable overall standards of energy efficiency

Values which do not achieve the standards in the Non-Domestic Building Services Compliance Guide and Part L are displayed in red.

Building fabric

Element	U _{a-Limit}	Ua-Calc	U i-Calc	Surface where the maximum value occurs*
Wall**	0.35	0.18	0.18	LV000014:Surf[6]
Floor	0.25	0.13	0.13	LV000000:Surf[0]
Roof	0.25	-	-	UNKNOWN
Windows***, roof windows, and rooflights	2.2	1.43	1.43	LV000014:Surf[0]
Personnel doors	2.2	-	-	No Personnel doors in building
Vehicle access & similar large doors	1.5	-	-	No Vehicle access doors in building
High usage entrance doors	3.5		-	No High usage entrance doors in building
11 11 11 11 11 11 11 11 11 11 11	11/ 21/17	1		

U_{a-Limit} = Limiting area-weighted average U-values [W/(m²K)]

 $U_{a\text{-}Calc}$ = Calculated area-weighted average U-values [W/(m²K)]

U_{i-Calc} = Calculated maximum individual element U-values [W/(m²K)]

N.B.: Neither roof ventilators (inc. smoke vents) nor swimming pool basins are modelled or checked against the limiting standards by the tool.

Air Permeability	Worst acceptable standard	This building
m ³ /(h.m ²) at 50 Pa	10	3

^{*} There might be more than one surface where the maximum U-value occurs.

^{**} Automatic U-value check by the tool does not apply to curtain walls whose limiting standard is similar to that for windows.

^{***} Display windows and similar glazing are excluded from the U-value check.

Building services

The standard values listed below are minimum values for efficiencies and maximum values for SFPs. Refer to the Non-Domestic Building Services Compliance Guide for details.

Whole building lighting automatic monitoring & targeting with alarms for out-of-range values	YES
Whole building electric power factor achieved by power factor correction	>0.95

1- Charlton Riverside Heating and Cooling

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(I/s)]	HR efficiency					
This system	0.86	4	0	0	0.85					
Standard value	0.91*	3.2	N/A	N/A	0.5					
Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system YES										
* Standard shown is for gas single boiler systems <=2 MW output. For single boiler systems >2 MW or multi-boiler systems, (overall) limiting										

^{*} Standard shown is for gas single boiler systems <= 2 MW output. For single boiler systems > 2 MW or multi-boiler systems, (overall) limiting efficiency is 0.86. For any individual boiler in a multi-boiler system, limiting efficiency is 0.82.

1- CHECK2-CHP

	CHPQA quality index	CHP electrical efficiency
This building	105	0.4
Standard value	105	0.2

Local mechanical ventilation, exhaust, and terminal units

ID	System type in Non-domestic Building Services Compliance Guide						
Α	Local supply or extract ventilation units serving a single area						
В	Zonal supply system where the fan is remote from the zone						
С	Zonal extract system where the fan is remote from the zone						
D	Zonal supply and extract ventilation units serving a single room or zone with heating and heat recovery						
Е	Local supply and extract ventilation system serving a single area with heating and heat recovery						
F	Other local ventilation units						
G	Fan-assisted terminal VAV unit						
Н	Fan coil units						
I	Zonal extract system where the fan is remote from the zone with grease filter						

Zone name		SFP [W/(I/s)]									LID « ((' - ' - · · · · ·	
ID of system type	Α	В	С	D	Е	F	G	Н	I	HR efficiency		
Standard value	0.3	1.1	0.5	1.9	1.6	0.5	1.1	0.5	1	Zone	Standard	
WC	-	-	0.4	-	-	-	-	-	-	-	N/A	
Office 1F - S	-	1.1	0	-	-	-	-	-	-	-	N/A	
Office 1F - N	-	1.1	0	-	-	-	-	-	-	-	N/A	
Office 1F - WC	-	-	0.4	-	-	-	-	-	-	-	N/A	
Office 1F - E1	-	1.1	0	-	-	-	-	-	-	-	N/A	
Office 1F - E2	-	1.1	0	-	-	-	-	-	-	-	N/A	
Office 1F - W2	-	1.1	0	-	-	-	-	-	-	-	N/A	
Office 1F - W1	-	1.1	0	-	-	-	-	-	-	-	N/A	
Office-S	-	1.1	0	-	-	-	-	-	-	-	N/A	
Office-W	-	1.1	0	-	-	-	-	-	-	-	N/A	
Office-W	-	1.1	0	-	-	-	-	-	-	-	N/A	

General lighting and display lighting	Lumino	us effic		
Zone name	Luminaire	Lamp	Display lamp	General lighting [W]
Standard value	60	60	22	
WC	-	120	-	50

[&]quot;No HWS in project, or hot water is provided by HVAC system"

General lighting and display lighting	Lumino	us effic		
Zone name	Luminaire	Lamp	Display lamp	General lighting [W]
Standard value	60	60	22	
Office 1F - S	120	-	-	453
Office 1F - N	120	-	-	460
Office 1F - WC	-	120	-	49
Office 1F - E1	120	-	-	256
Office 1F - E2	120	-	-	249
Office 1F - W2	120	-	-	191
Office 1F - W1	120	-	-	209
Office-S	120	-	-	378
Office-W	120	-	-	446
Office-W	120	-	-	437

Criterion 3: The spaces in the building should have appropriate passive control measures to limit solar gains

Zone	Solar gain limit exceeded? (%)	Internal blinds used?
WC	N/A	N/A
Office 1F - S	NO (-17.7%)	YES
Office 1F - N	NO (-31.1%)	YES
Office 1F - WC	N/A	N/A
Office 1F - E1	NO (-21.8%)	YES
Office 1F - E2	NO (-4.6%)	YES
Office 1F - W2	NO (-10.9%)	YES
Office 1F - W1	NO (-8.4%)	YES
Office-S	NO (-3.3%)	YES
Office-W	NO (-5.5%)	YES
Office-W	NO (-30.3%)	YES

Criterion 4: The performance of the building, as built, should be consistent with the calculated BER

Separate submission

Criterion 5: The necessary provisions for enabling energy-efficient operation of the building should be in place

Separate submission

EPBD (Recast): Consideration of alternative energy systems

Were alternative energy systems considered and analysed as part of the design process?	YES
Is evidence of such assessment available as a separate submission?	YES
Are any such measures included in the proposed design?	YES

Technical Data Sheet (Actual vs. Notional Building)

Building Global Parameters

	Actual	Notional
Area [m²]	587.5	587.5
External area [m²]	819.4	819.4
Weather	LON	LON
Infiltration [m³/hm²@ 50Pa]	3	3
Average conductance [W/K]	745.96	486.44
Average U-value [W/m²K]	0.91	0.59
Alpha value* [%]	10	10

^{*} Percentage of the building's average heat transfer coefficient which is due to thermal bridging

Building Use

100

% Area Building Type

A1/A2 Retail/Financial and Professional services A3/A4/A5 Restaurants and Cafes/Drinking Est./Takeaways

B1 Offices and Workshop businesses

B2 to B7 General Industrial and Special Industrial Groups

B8 Storage or Distribution

C1 Hotels

C2 Residential Institutions: Hospitals and Care Homes

C2 Residential Institutions: Residential schools

C2 Residential Institutions: Universities and colleges

C2A Secure Residential Institutions

Residential spaces

D1 Non-residential Institutions: Community/Day Centre

D1 Non-residential Institutions: Libraries, Museums, and Galleries

D1 Non-residential Institutions: Education

D1 Non-residential Institutions: Primary Health Care Building D1 Non-residential Institutions: Crown and County Courts D2 General Assembly and Leisure, Night Clubs, and Theatres

Others: Passenger terminals Others: Emergency services

Others: Miscellaneous 24hr activities

Others: Car Parks 24 hrs Others: Stand alone utility block

Energy Consumption by End Use [kWh/m²]

	Actual	Notional
Heating	27.41	15.19
Cooling	10.51	9.5
Auxiliary	4.48	2.78
Lighting	5.27	21.64
Hot water	3.42	3.07
Equipment*	41.32	41.32
TOTAL**	50.94	52.18

^{*} Energy used by equipment does not count towards the total for consumption or calculating emissions.

** Total is net of any electrical energy displaced by CHP generators, if applicable.

Energy Production by Technology [kWh/m²]

	Actual	Notional
Photovoltaic systems	0	0
Wind turbines	0	0
CHP generators	0.15	0
Solar thermal systems	0	0

Energy & CO₂ Emissions Summary

	Actual	Notional
Heating + cooling demand [MJ/m²]	195.89	176.71
Primary energy* [kWh/m²]	97.81	123.81
Total emissions [kg/m²]	16.8	21.1

^{*} Primary energy is net of any electrical energy displaced by CHP generators, if applicable.

F	HVAC Systems Performance									
Sys	stem Type	Heat dem MJ/m2	Cool dem MJ/m2	Heat con kWh/m2	Cool con kWh/m2	Aux con kWh/m2	Heat SSEEF	Cool SSEER	Heat gen SEFF	Cool gen SEER
[ST	[ST] Split or multi-split system, [HS] LTHW boiler, [HFT] Natural Gas, [CFT] Electricity									
	Actual	82.7	113.2	27	10.5	4.5	0.84	2.99	0.86	4
	Notional	47.1	129.6	15.2	9.5	2.8	0.86	3.79		

Key to terms

Heat dem [MJ/m2] = Heating energy demand
Cool dem [MJ/m2] = Cooling energy demand
Heat con [kWh/m2] = Heating energy consumption
Cool con [kWh/m2] = Cooling energy consumption
Aux con [kWh/m2] = Auxiliary energy consumption

Heat SSEFF = Heating system seasonal efficiency (for notional building, value depends on activity glazing class)

Cool SSEER = Cooling system seasonal energy efficiency ratio

Heat gen SSEFF = Heating generator seasonal efficiency

Cool gen SSEER = Cooling generator seasonal energy efficiency ratio

ST = System type
HS = Heat source
HFT = Heating fuel type
CFT = Cooling fuel type

Key Features

The Building Control Body is advised to give particular attention to items whose specifications are better than typically expected.

Building fabric

Element	U i-Тур	U _{i-Min}	Surface where the minimum value occurs*		
Wall	0.23	0.18	LV000014:Surf[6]		
Floor	0.2	0.13	LV000000:Surf[0]		
Roof	0.15	-	UNKNOWN		
Windows, roof windows, and rooflights	1.5	1.43	LV000014:Surf[0]		
Personnel doors	1.5	-	No Personnel doors in building		
Vehicle access & similar large doors	1.5	-	No Vehicle access doors in building		
High usage entrance doors	1.5	-	No High usage entrance doors in building		
U _{i-Typ} = Typical individual element U-values [W/(m²K)] U _{i-Min} = Minimum individual element U-values		U _{i-Min} = Minimum individual element U-values [W/(m²K)]			
* There might be more than one surface where the minimum U-value occurs.					

Air Permeability	Typical value	This building
m³/(h.m²) at 50 Pa	5	3

This design submission has been carried out using Approved SAP software. It has been prepared from plans and specifications and may not reflect the property as constructed.

Assessor name	Mr Orestis Angelidis	Assessor number	1
Client		Last modified	11/10/2018
Address	A 2B4P A Charlton Riverside, London, SE10 0NU		

Client								Last modified		11/10	/2018	
Address	A 2B4P A	Charlton R	liverside, Lo	ondon, SE1	0 0NU							
1. Overall dwelling dimens	ions											
				A	rea (m²)		Δ	verage storey height (m)		Vo	olume (m³)	
Lowest occupied					80.00] (1a) x		3.00	(2a) =		240.00	(3a)
Total floor area	(1a)	+ (1b) + (1d	c) + (1d)(1n) =	80.00	(4)						
Dwelling volume							((3a) + (3b) + (3	c) + (3d)(3n) =	240.00	(5)
2. Ventilation rate												
										m	³ per hour	
Number of chimneys								0	x 40 =		0	(6a)
Number of open flues								0	x 20 =		0	(6b)
Number of intermittent fans	5							0	x 10 =		0	(7a)
Number of passive vents								0	x 10 =		0	(7b)
Number of flueless gas fires								0	x 40 =		0	(7c)
										Air	changes pe hour	er
Infiltration due to chimneys,	, flues, fans	, PSVs		(6a)	+ (6b) + (7	a) + (7b) + (7c) =	0	÷ (5) =		0.00	(8)
If a pressurisation test has b	een carried	l out or is i	ntended, pi	roceed to (1	17), otherw	ise continue	e from (9) to (16)				
Air permeability value, q50,	expressed	in cubic me	etres per h	our per squ	are metre	of envelope	e area				3.00	(17)
If based on air permeability	value, then	(18) = [(17	7) ÷ 20] + (8	3), otherwis	se (18) = (1	6)					0.15	(18)
Number of sides on which th	ne dwelling	is sheltere	ed								3	(19)
Shelter factor								1 -	[0.075 x (19)] =	0.78	(20)
Infiltration rate incorporating	g shelter fa	actor							(18) x (20) =	0.12	(21)
Infiltration rate modified for	monthly w	vind speed	:									
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Monthly average wind spee	d from Tab	le U2										_
5.10	5.00	4.90	4.40	4.30	3.80	3.80	3.70	4.00	4.30	4.50	4.70	(22)
Wind factor (22)m ÷ 4												_
1.28	1.25	1.23	1.10	1.08	0.95	0.95	0.93	1.00	1.08	1.13	1.18	(22a)
Adjusted infiltration rate (al												_
0.15	0.15	0.14	0.13	0.12	0.11	0.11	0.11	0.12	0.12	0.13	0.14	(22b)
Calculate effective air chang												¬ .
If mechanical ventilation	ŭ		0 ,								0.50	(23a)
If balanced with heat rec	overy: effic	ciency in %	allowing fo	or in-use fac	ctor from T		-) . 100	1			76.50	(23c)

0.27

0.27

0.26

0.26

Effective air change rate - enter (24a) or (24b) or (24c) or (24d) in (25)

0.25

0.25

(24a)

(25)

0.23

0.23

0.23

0.23

0.23

0.23

0.23

0.23

0.24

0.24

0.25

0.25

a) If balanced mechanical ventilation with heat recovery (MVHR) (22b)m + (23b) x [1 - (23c) \div 100]

0.25

0.25

0.24

0.24

0.26

3. Heat losses and heat loss parameter									
Element	Gross area, m²	Openings m ²	Net ar A, m		U-value W/m²K	A x U W/	К к-value, kJ/m².K	Ахк, kJ/K	
Door			1.89	x [1.00	= 1.89			(26)
Window			12.48	3 x	1.33	= 16.55			(27)
External wall			11.52	2 x [0.18	= 2.07			(29a)
Party wall			78.13	1 x	0.00	= 0.00			(32)
Roof			80.00) x	0.13	= 10.40			(30)
Total area of external elements ∑A, m²			105.8	9					(31)
Fabric heat loss, $W/K = \sum (A \times U)$						(26)	(30) + (32) =	30.91	(33)
Heat capacity Cm = \sum (A x κ)					(28)	.(30) + (32) +	(32a)(32e) =	N/A	(34)
Thermal mass parameter (TMP) in kJ/m²K								250.00	(35)
Thermal bridges: $\Sigma(L \times \Psi)$ calculated using App	endix K							2.37	(36)
Total fabric heat loss							(33) + (36) =	33.28	(37)
Jan Feb Mai	Apr	May	Jun	Jul	Aug	Sep	Oct Nov	Dec	
Ventilation heat loss calculated monthly 0.33	x (25)m x (5)								
21.04 20.81 20.5	3 19.43	19.20	18.05	18.05	17.82	18.51	19.20 19.66	20.12	(38)
Heat transfer coefficient, W/K $(37)m + (38)m$									
54.33 54.10 53.8	7 52.71	52.48	51.33	51.33	51.10	51.79	52.48 52.94	53.41	
						Average = ∑(39)112/12 =	52.66	(39)
Heat loss parameter (HLP), W/m ² K (39)m ÷ (4)								
0.68 0.68 0.67	0.66	0.66	0.64	0.64	0.64	0.65	0.66 0.66	0.67	
						Average = ∑(40)112/12 =	0.66	(40)
Number of days in month (Table 1a)									_
31.00 28.00 31.0	30.00	31.00	30.00	31.00	31.00	30.00	31.00 30.00	31.00	(40)
4. Water heating energy requirement									
Assumed occupancy, N								2.46	(42)
Annual average hot water usage in litres per d	ay Vd,average	e = (25 x N) +	36					92.69	(43)
Jan Feb Mai		May	Jun	Jul	Aug	Sep	Oct Nov	Dec	
Hot water usage in litres per day for each mor	ith Vd,m = fac	tor from Tab	le 1c x (43)						
101.96 98.25 94.5	5 90.84	87.13	83.42	83.42	87.13	90.84	94.55 98.25	101.96	
			•		•		Σ(44)112 =	1112.32	(44)
Energy content of hot water used = 4.18 x Vd,	m x nm x Tm/3	3600 kWh/m	onth (see Ta	ables 1b	, 1c 1d)				_
151.21 132.25 136.4	7 118.97	114.16	98.51	91.28	104.75	106.00	123.53 134.8	5 146.44	
							∑(45)112 =	1458.42	(45)
Distribution loss 0.15 x (45)m									
22.68 19.84 20.4	7 17.85	17.12	14.78	13.69	15.71	15.90	18.53 20.23	21.97	(46)
Storage volume (litres) including any solar or \	WWHRS storag	ge within sam	ne vessel					0.00	(47)
Water storage loss:									
a) If manufacturer's declared loss factor is kno	wn (kWh/day))						0.00	(48)
Temperature factor from Table 2b								1.00	(49)
Energy lost from water storage (kWh/day)	(48) x (49)							0.00	(50)
Enter (50) or (54) in (55)								0.00	(55)
Water storage loss calculated for each month	(55) x (41)m								
0.00 0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	(56)
If the vessel contains dedicated solar storage of	or dedicated V	VWHRS (56)r	n x [(47) - Vs	s] ÷ (47),	, else (56)				
0.00 0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	(57)

Primary circuit loss for eac	h month fro	m Table 3										
23.26	21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26	(59)
Combi loss for each month	from Table	3a, 3b or 3	С	'	•	1	•			•	1	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(61)
Total heat required for wa	ter heating o	calculated f	or each mo	onth 0.85 x	(45)m + (4	6)m + (57)r	n + (59)m +	+ (61)m				, ,
174.47	153.26	159.73	141.49	137.42	121.02	114.55	128.01	128.51	146.80	157.36	169.70	(62)
Solar DHW input calculated	· ·											(,
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(63)
Output from water heater	1		l	1	1				0.00	0.00	0.00	()
174.47	153.26	159.73	141.49	137.42	121.02	114.55	128.01	128.51	146.80	157.36	169.70]
274.47	133.20	133.73	141.43	137.42	121.02	114.55	120.01	120.51	Σ(64)1		732.32	(64)
Heat gains from water hea	ting (kWh/n	nonth) 0.25	5 × [0.85 ×	(45)m + (61	.)m] + 0.8 ×	: [(46)m + (5	57)m + (59))m]	2(04)1	12	732.32] (04)
68.89	60.78	63.99	57.57	56.57	50.76	48.96	53.44	53.26	59.69	62.85	67.30	(65)
				1								, ,
5. Internal gains												
Jan Metabolic gains (Table 5)	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
123.14	123.14	123.14	123.14	123.14	123.14	123.14	123.14	123.14	123.14	123.14	123.14	(66)
Lighting gains (calculated in			<u> </u>			123.11	123.11	123.11	123.11	123.11	123.11	(00)
20.01	17.77	14.46	10.94	8.18	6.91	7.46	9.70	13.02	16.53	19.29	20.57	(67)
Appliance gains (calculated				1		7.40	3.70	13.02	10.55	13.23	20.37	(07)
219.44	221.72	215.98	203.76	188.34	173.85	164.17	161.89	167.63	179.84	195.27	209.76	(68)
Cooking gains (calculated i						104.17	101.09	167.03	179.04	195.27	209.76	(00)
		-				25.24	25.24	25.24	25.24	25.24	25.24	(60)
35.31	35.31	35.31	35.31	35.31	35.31	35.31	35.31	35.31	35.31	35.31	35.31	(69)
Pump and fan gains (Table												l (=0)
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(70)
Losses e.g. evaporation (Ta								1		l		1
-98.51	-98.51	-98.51	-98.51	-98.51	-98.51	-98.51	-98.51	-98.51	-98.51	-98.51	-98.51	(71)
Water heating gains (Table					T		T	1	Г	T	Γ	1
92.59	90.45	86.00	79.96	76.03	70.51	65.81	71.83	73.97	80.22	87.29	90.46	(72)
Total internal gains (66)m	+ (67)m + (6	68)m + (69)ı 	m + (70)m	+ (71)m + (72)m							1
391.98	389.88	376.38	354.61	332.50	311.21	297.38	303.36	314.56	336.54	361.79	380.73	(73)
6. Solar gains												
0 .		Access f	actor	Area	Sol	ar flux		g	FF		Gains	
		Table		m²		V/m²	spec	ific data	specific o	lata	W	
							or T	able 6b	or Table	6c		
SouthWest		0.7	7 x	12.48	x 3	6.79 x	0.9 x	0.40 x	0.80	=	101.83	(79)
Solar gains in watts ∑(74)r	n(82)m											
101.83	173.45	237.33	294.06	329.37	326.99	315.25	288.91	256.97	191.70	121.97	87.14	(83)
Total gains - internal and se	olar (73)m +	(83)m										
493.81	563.34	613.70	648.66	661.87	638.19	612.63	592.27	571.53	528.24	483.76	467.87	(84)
7. Mean internal tempera	ature (heati	ng season)										
Temperature during heatir	g periods in	the living a	area from T	Table 9, Th1	L(°C)						21.00	(85)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation factor for gains			•	•			J	•				
1.00	0.99	0.96	0.88	0.72	0.51	0.37	0.40	0.62	0.90	0.99	1.00	(86)
Mean internal temp of livir												, · · /

				1		1	1						1
Tanananatuna di	20.47	20.60	20.76	20.91	20.98	21.00	21.00	21.00	21.00	20.91	20.67	20.45	[(87)
Temperature du	_		1				20.20	20.40	20.20	20.20	20.27	20.27	7 (00)
Likilia aki an faraka	20.36	20.36	20.36	20.38	20.38	20.39	20.39	20.40	20.39	20.38	20.37	20.37	(88)
Utilisation facto		1	_		0.60	1 0 47	0.22	0.24	0.57		0.00	1.00	7 (00)
NA intonella	0.99	0.98	0.95	0.86	0.68	0.47	0.32	0.34	0.57	0.88	0.98	1.00	(89)
Mean internal to						_							7 ()
	19.64	19.83	20.06	20.28	20.37	20.39	20.39	20.40	20.38	20.28	19.95	19.62] (90)
Living area fract		6			(4. 6. 4)				Li	ving area ÷	(4) = [0.29	(91)
Mean internal to			1	_		_	1			1			7
	19.88	20.05	20.26	20.46	20.54	20.57	20.57	20.57	20.56	20.46	20.15	19.86	J (92)
Apply adjustme				1		ere appropr	1			1			7
	19.88	20.05	20.26	20.46	20.54	20.57	20.57	20.57	20.56	20.46	20.15	19.86	(93)
8. Space heating	ng requiren	nent											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation facto				. 	,				ССР				
	0.99	0.98	0.95	0.86	0.69	0.48	0.33	0.36	0.58	0.88	0.98	1.00	(94)
Useful gains, դո		1		0.00	0.05	0.40	0.55	0.30	0.50	0.00	0.50	1.00] (34)
Oscial gains, ifi	490.74	553.69	584.32	557.61	455.82	305.83	203.56	212.95	332.76	465.06	475.02	465.80	(95)
Monthly averag					433.82	303.83	203.30	212.93	332.70	403.00	473.02	403.80] (33)
wontiny averag	4.30	4.90	6.50	8.90	11.70	14.60	16.60	16.40	14.10	10.60	7.10	4.20	(96)
Heat loss rate fo		!	l .				16.60	10.40	14.10	10.60	7.10	4.20] (90)
Heat 1055 rate it			1				202.57	242.00	22454	F47.67	604.02	026.40	1 (07)
Cases booting re	846.26	819.54	741.13	609.55	464.09	306.21	203.57	212.98	334.54	517.67	691.03	836.10	J (97)
Space heating re			1	1			0.00	0.00	0.00	20.45	455.52	275 50	7
	264.51	178.65	116.67	37.40	6.16	0.00	0.00	0.00	0.00	39.15	155.53	275.50] (00)
Consendentia succession	:	134/1- / 2/.							∑(98	3)15, 10		12.42	(98)
Space heating re	equirement	Kvvn/m-/y	ear							(98)	÷ (4)	13.42	J (99)
9b. Energy req	uirements ·	- communit	y heating s	scheme									
Fraction of spac	e heat from	n secondary	/suppleme	ntary syste	m (table 11	1)				'0' if r	none	0.00	(301)
Fraction of spac	e heat from	n communit	y system							1 - (30	01) =	1.00	(302)
Fraction of com	munity hea	t from boile	ers									1.00	(303a)
Fraction of total	space heat	from comr	nunity boil	ers						(302) x (303	3a) =	1.00	(304a)
Factor for contr	ol and char	ging metho	d (Table 4c	(3)) for con	nmunity sp	ace heating						1.00	(305)
Factor for charg	ing method	l (Table 4c(3	3)) for com	munity wat	er heating							1.00	(305a)
Distribution loss	factor (Tak	ole 12c) for	community	heating sy	rstem							1.15	(306)
Space heating													
Annual space he	eating requi	rement						1	073.55]			(98)
Space heat from										x (305) x (30	06) = 1	1234.59	(307a)
•								,	, , ,	, , ,	,		. ,
Water heating													
Annual water he	eating requi	irement						1	732.32]			(64)
Water heat fron										」 (305a) x (30	06) = 1	1992.16	(310a)
Electricity used		tribution					0.01	L × [(307a)				32.27	(313)
	2	30.011					0.01	[(00,0]	,/		- /1		1 (0)
Electricity for pu	umps, fans a	and electric	keep-hot (Table 4f)									
mechanical v					e innut fror	m Qutside			351.36	1			(330a)
meenamed (. C c. i dei Oi I I	and balant	ca, canac	. J. positive		Jaisiac				1			(5564)

Electricity for lighting (Appendix L) Total delivered energy for all uses

351.36 353.42

(307) + (309) + (310) + (312) + (315) + (331) + (332)...(337b) =3931.53 (338)

10b. Fuel costs - community heating scheme

	Fuel kWh/year		Fuel price		Fuel cost £/year	
Space heating from boilers	1234.59	x	4.24	x 0.01 =	52.35	(340a)
Water heating from boilers	1992.16	x	4.24	x 0.01 =	84.47	(342a)
Pumps and fans	351.36	x	13.19	x 0.01 =	46.34	(349)
Electricity for lighting	353.42	x	13.19	x 0.01 =	46.62	(350)
Additional standing charges					120.00	(351)
Total energy cost			(340a)(342e) -	+ (345)(354) =	349.77	(355)

11b. SAP rating - community heating scheme

Energy cost deflator (Table 12)			0.42	(356)
Energy cost factor (ECF)			1.18	(357)
SAP value			83.61	
SAP rating (section 13)			84	(358)
SAP band			В]
12b. CO₂ emissions - community heating scheme				
	Energy kWh/year	Emission factor	Emissions (kg/year)	

12b. CO ₂ emissions - community neating scheme						
	Energy kWh/year		Emission factor		Emissions (kg/year)	
Emissions from other sources (space heating)						
Efficiency of boilers	86.00					(367a)
CO2 emissions from boilers $[(307a)+(310a)] \times 100 \div (367a) =$	3752.04	x	0.216	= [810.44	(367)
Electrical energy for community heat distribution	32.27	x	0.519	= [16.75	(372)
Total CO2 associated with community systems					827.19	(373)
Total CO2 associated with space and water heating					827.19	(376)
Pumps and fans	351.36	x	0.519	= [182.36	(378)
Electricity for lighting	353.42	x	0.519	= [183.42	(379)
Total CO ₂ , kg/year				(376)(382) = [1192.97	(383)
Dwelling CO₂ emission rate				(383) ÷ (4) = [14.91	(384)
El value					87.21]
El rating (section 14)					87	(385)
El band					В]

		Energy kWh/year		Primary factor		Primary energy (kWh/year)	r
Primary energy from other sou	rces (space heating)						
Efficiency of boilers		86.00					(367a)
Primary energy from boilers	[(307a)+(310a)] x 100 ÷ (367a) =	3752.04	х	1.22	=	4577.48	(367)
Electrical energy for communit	y heat distribution	32.27	x	3.07	=	99.06	(372)
Total primary energy associate	d with community systems					4676.55	(373)
Total primary energy associate	d with space and water heating					4676.55	(376)
Pumps and fans		351.36	х	3.07	=	1078.68	(378)
Electricity for lighting		353.42	х	3.07	=	1084.99	(379)
Primary energy kWh/year						6840.22	(383)

(331)

(332)

This design submission has been carried out using Approved SAP software. It has been prepared from plans and specifications and may not reflect the property as constructed.

Assessor name	Mr Orestis Angelidis	Assessor number	1
Client		Last modified	11/10/2018
Address	A 2B4P A Charlton Riverside, London, SE10 0NU		

Client							L	ast modified		11/10,	/2018	
Address	A 2B4P A	Charlton R	liverside, L	ondon, SE1	0 0NU							
1. Overall dwelling dimer	sions				_						_	
				А	rea (m²)			erage storey neight (m)		Vo	lume (m³)	
Lowest occupied					39.00] (1a) x		3.00	(2a) =		117.00	(3a)
Total floor area	(1a)	+ (1b) + (1c	c) + (1d)(1n) =	39.00	(4)						
Dwelling volume							(3	a) + (3b) + (3	c) + (3d)(3n)	=	117.00	(5)
2. Ventilation rate												
										m³	per hour	
Number of chimneys								0	x 40 =		0	(6a)
Number of open flues								0	x 20 =		0	(6b)
Number of intermittent far	าร							0	x 10 =		0	(7a)
Number of passive vents								0	x 10 =		0	(7b)
Number of flueless gas fire	S							0	x 40 =		0	(7c)
										Air c	hanges pe hour	r
Infiltration due to chimney	s, flues, fan	s, PSVs		(6a)	+ (6b) + (7a	a) + (7b) + (7	7c) =	0	÷ (5) =		0.00	(8)
If a pressurisation test has	been carrie	d out or is i	ntended, p	roceed to (17), otherw	rise continue	e from (9)	to (16)				
Air permeability value, q50	, expressed	in cubic me	etres per h	our per squ	are metre	of envelope	area				3.00	(17)
If based on air permeability	y value, the	n (18) = [(17	7) ÷ 20] + (8	8), otherwis	se (18) = (1	6)					0.15	(18)
Number of sides on which	the dwelling	g is sheltere	ed								3	(19)
Shelter factor								1 -	[0.075 x (19)]	=	0.78	(20)
Infiltration rate incorporati	ng shelter f	actor							(18) x (20)	=	0.12	(21)
Infiltration rate modified for	or monthly v	wind speed	:									
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Monthly average wind spe	ed from Tab	ole U2										
5.10	5.00	4.90	4.40	4.30	3.80	3.80	3.70	4.00	4.30	4.50	4.70	(22)
Wind factor (22)m ÷ 4												_
1.28	1.25	1.23	1.10	1.08	0.95	0.95	0.93	1.00	1.08	1.13	1.18	(22a)
Adjusted infiltration rate (a	llowing for	shelter and	wind facto	or) (21) x (2	22a)m							_
0.15	0.15	0.14	0.13	0.12	0.11	0.11	0.11	0.12	0.12	0.13	0.14	(22b)
Calculate effective air char	ge rate for	the applical	ble case:									_
If mechanical ventilatio	_		-								0.50	(23a)
If balanced with heat re	•	•	_								76.50	(23c)
a) If balanced mechanic	al ventilatio	on with hea	t recovery	(MVHR) (22	2b)m + (23b	o) x [1 - (23c	:) ÷ 100]					_

0.27

0.27

0.26

0.26

Effective air change rate - enter (24a) or (24b) or (24c) or (24d) in (25)

0.26

0.26

0.25

0.25

0.24

0.24

0.25

0.25

(24a)

(25)

0.23

0.23

0.23

0.23

0.23

0.23

0.23

0.23

0.24

0.24

0.25

3. Heat losses	and heat loss parameter									
Element		Gross area, m²	Openings m ²	Net a		U-value W/m²K	A x U W/	К к-value, kJ/m².K	Ахк, kJ/K	
Door				1.8	89 x	1.00	= 1.89			(26)
Window				5.7	72 x	1.33	= 7.58			(27)
External wall				10.	78 x	0.18	= 1.94			(29a)
Party wall				62.	01 x	0.00	= 0.00			(32)
Roof				39.	00 x	0.13	= 5.07			(30)
Total area of ext	ternal elements ∑A, m²			57.	39					(31)
Fabric heat loss,	$W/K = \sum (A \times U)$						(26)	(30) + (32) =	16.48	(33)
Heat capacity Cr	m = ∑(A x κ)					(28)	.(30) + (32) +	(32a)(32e) =	N/A	(34)
Thermal mass p	arameter (TMP) in kJ/m²K								250.00	(35)
Thermal bridges	s: ∑(L x Ψ) calculated using A	Appendix K							1.49	(36)
Total fabric heat	t loss							(33) + (36) =	17.97	(37)
	Jan Feb N	1ar Apr	May	Jun	Jul	Aug	Sep	Oct Nov	Dec	
Ventilation heat	loss calculated monthly 0.	33 x (25)m x (5)								
	10.26 10.15 10	0.03 9.47	9.36	8.80	8.80	8.69	9.03	9.36 9.59	9.81	(38)
Heat transfer co	efficient, W/K (37)m + (38)	m								
	28.23 28.12 28	3.01 27.45	27.33	26.77	26.77	26.66	27.00	27.33 27.56	27.78	
							Average = ∑(39)112/12 =	27.42	(39)
Heat loss param	eter (HLP), W/m²K (39)m ÷	(4)								
	0.72 0.72 0	.72 0.70	0.70	0.69	0.69	0.68	0.69	0.70 0.71	0.71	
							Average = ∑(40)112/12 =	0.70	(40)
Number of days	in month (Table 1a)									
	31.00 28.00 33	00 30.00	31.00	30.00	31.00	31.00	30.00	31.00 30.00	31.00	(40)
4 Water heati	ng energy requirement									
Assumed occupa									1.38	(42)
•	hot water usage in litres pe	r day Vd.average	e = (25 x N) +	36					66.98	(43)
7		lar Apr	May	Jun	Jul	Aug	Sep	Oct Nov	Dec	(/
Hot water usage	e in litres per day for each n	onth Vd,m = fac				J	•			
· ·		3.31 65.64	62.96	60.28	60.28	62.96	65.64	68.31 70.99	73.67	7
								Σ(44)112 =	803.71	(44)
Energy content	of hot water used = 4.18 x \	/d,m x nm x Tm/	/3600 kWh/m	onth (see	Tables 1b	, 1c 1d)		2. ,		_ ` ′
	109.25 95.56 98	8.60 85.97	82.49	71.18	65.96	75.69	76.59	89.26 97.43	105.81	7
						•	1	Σ(45)112 =	1053.78	(45)
Distribution loss	5 0.15 x (45)m									
	16.39 14.33 14	1.79 12.89	12.37	10.68	9.89	11.35	11.49	13.39 14.62	15.87	(46)
Storage volume	(litres) including any solar of	or WWHRS stora	ge within sam	ne vessel		•			0.00	(47)
Water storage lo	oss:									
a) If manufactur	er's declared loss factor is k	nown (kWh/day	·)						0.00	(48)
	e factor from Table 2b								1.00	(49)
	rom water storage (kWh/da	y) (48) x (49)							0.00	(50)
Enter (50) or (54									0.00	(55)
` , , `	oss calculated for each mon	th (55) x (41)m								_ · ·
, and the second		.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	(56)
If the vessel con	tains dedicated solar storag					-1	<u>,</u>	1 3.30		_, 、 /
		.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	(57)
	1 2 2 3	1 2.22	· · · · · · ·			1		1 2.30		_ 、 - /

	ss for each	n month fro	m Table 3										
Γ	23.26	21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26	(59)
Combi loss for ea	ch month	from Table	3a, 3b or 3	С	1	1		ļ.	·				. ,
Γ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(61)
Total heat require			I.		1					0.00	0.00	3,00] (/
[[132.52	116.57	121.87	108.48	105.75	93.69	89.22	98.95	99.10	112.52	119.95	129.07	(62)
Solar DHW input							03.22	30.33	33.10	112.52	113.33	123.07] (02)
[0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(63)
Output from wate			l	1	1	1	0.00	0.00	0.00	0.00	0.00	0.00] (03)
	132.52	116.57	121.87	108.48	105.75	93.69	89.22	98.95	99.10	112.52	119.95	129.07	1
L	152.52	110.57	121.67	100.46	105.75	95.09	09.22	96.95	99.10			327.68]] (64)
Heat gains from v	water heat	ing (kWh/m	nonth) 0.2!	5 × [0.85 ×	(45)m + (61	l)m] + 0.8 ×	[(46)m + (5	57)m + (59)	m]	∑(64)1	.12 1	327.08	(64)
	54.94	48.58	51.40	46.59	46.04	41.68	40.54	43.78	43.48	48.29	50.41	53.79	(65)
E Internal seine													
5. Internal gains		F-1	P.4 -	A :-	P.4 -		1		C	0.:	B1	B -	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Metabolic gains (4						T	1
	69.00	69.00	69.00	69.00	69.00	69.00	69.00	69.00	69.00	69.00	69.00	69.00	(66)
Lighting gains (ca			_, equation	L9 or L9a),	also see Ta	able 5							,
	10.97	9.75	7.93	6.00	4.49	3.79	4.09	5.32	7.14	9.06	10.58	11.28	(67)
Appliance gains (calculated	in Appendi	x L, equatio	on L13 or L1	13a), also se	ee Table 5							_
	119.03	120.26	117.15	110.52	102.16	94.30	89.05	87.81	90.92	97.55	105.91	113.78	(68)
Cooking gains (ca	lculated in	ı Appendix I	L, equation	L15 or L15	a), also see	Table 5							
	29.90	29.90	29.90	29.90	29.90	29.90	29.90	29.90	29.90	29.90	29.90	29.90	(69)
Pump and fan gai	ins (Table !	5a)											
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(70)
Losses e.g. evapo	ration (Tal	ble 5)											
	-55.20	-55.20	-55.20	-55.20	-55.20	-55.20	-55.20	-55.20	-55.20	-55.20	-55.20	-55.20	(71)
Water heating ga	ins (Table	5)											
	73.84	72.29	69.08	64.71	61.88	57.88	54.49	58.84	60.38	64.90	70.01		-
_		1 ,2.23										72.30	(72)
Total internal gair	ns (66)m -	1		m + (70)m	+ (71)m + (7						10.02	72.30	(72)
Total internal gain	ns (66)m - 247.54	1		m + (70)m · 224.94	+ (71)m + (7		191.33	195.67	202.15	215.22	230.20	72.30	(72)
		+ (67)m + (6	58)m + (69)ı			72)m			202.15	215.22			7
Total internal gain		+ (67)m + (6	58)m + (69)ı			72)m			202.15	215.22			7
[+ (67)m + (6	237.86 Access f	224.94 Factor	212.22 Area	72)m 199.67 Sol :	191.33	195.67	g	FF	230.20	241.05 Gains	7
		+ (67)m + (6	58)m + (69)ı 237.86	224.94 Factor	212.22	72)m 199.67 Sol :	191.33	195.67	g ific data	FF specific o	230.20	241.05	7
6. Solar gains		+ (67)m + (6	237.86 Access f	224.94 factor 6d	212.22 Area m²	72)m 199.67 Sol:	191.33 ar flux V/m²	195.67 spec or T	g ific data able 6b	FF specific o	230.20 data	241.05 Gains W] (73)
6. Solar gains SouthWest	247.54	+ (67)m + (6 246.00	237.86 Access f	224.94 factor 6d	212.22 Area	72)m 199.67 Sol:	191.33 ar flux V/m²	195.67 spec or T	g ific data	FF specific o	230.20 data	241.05 Gains	7
6. Solar gains	247.54 tts ∑(74)m	+ (67)m + (6 246.00	237.86 Access f Table	224.94 factor 6d 7 x	Area m² 5.72	72)m 199.67 Sol: W	191.33 ar flux V/m² 6.79	195.67 spec or T 0.9 x	g ific data able 6b	FF specific o or Table	230.20 data 6c =	241.05 Gains W 46.67] (73)] (79)
6. Solar gains SouthWest Solar gains in wat	247.54 tts Σ(74)m 46.67	+ (67)m + (6 246.00 n(82)m 79.50	237.86 Access f Table 0.77	224.94 factor 6d	212.22 Area m²	72)m 199.67 Sol:	191.33 ar flux V/m²	195.67 spec or T	g ific data able 6b	FF specific o	230.20 data	241.05 Gains W] (73)
6. Solar gains SouthWest	247.54 tts ∑(74)m 46.67 rnal and so	1(82)m 79.50	Access f Table 0.77 (83)m	224.94 factor 6d 7 x [134.78	212.22 Area m² 5.72 150.96	72)m 199.67 Sola W x 3	191.33 ar flux v/m² 6.79 x	195.67 spec or T 0.9 x (g ific data able 6b 0.40 x	FF specific or or Table 0.80	230.20 lata 6c = 55.90	241.05 Gains W 46.67] (73)] (79)] (83)
6. Solar gains SouthWest Solar gains in wat	247.54 tts Σ(74)m 46.67	+ (67)m + (6 246.00 n(82)m 79.50	237.86 Access f Table 0.77	224.94 factor 6d 7 x	Area m² 5.72	72)m 199.67 Sol: W	191.33 ar flux V/m² 6.79	195.67 spec or T 0.9 x	g ific data able 6b	FF specific o or Table	230.20 data 6c =	241.05 Gains W 46.67] (73)] (79)
6. Solar gains SouthWest Solar gains in wat Total gains - inter	247.54 tts Σ(74)m 46.67 rnal and so 294.21	79.50 1(82)m 79.50 1(73)m +	237.86 Access f Table 0.77 108.77 (83)m 346.63	224.94 factor 6d 7 x [134.78	212.22 Area m² 5.72 150.96	72)m 199.67 Sola W x 3	191.33 ar flux v/m² 6.79 x	195.67 spec or T 0.9 x (g ific data able 6b 0.40 x	FF specific or or Table 0.80	230.20 lata 6c = 55.90	241.05 Gains W 46.67] (73)] (79)] (83)
6. Solar gains SouthWest Solar gains in wat Total gains - inter	247.54 tts ∑(74)m 46.67 rnal and so 294.21 al tempera	79.50 blar (73)m + 325.50	Access f Table 0.77 (83)m 346.63	224.94 factor 6d 7 x 134.78	Area m² 5.72 150.96	72)m 199.67 Sola W 149.87	191.33 ar flux v/m² 6.79 x	195.67 spec or T 0.9 x (g ific data able 6b 0.40 x	FF specific or or Table 0.80	230.20 data 6c = 55.90	241.05 Gains W 46.67 39.94] (73)] (79)] (83)] (84)
6. Solar gains SouthWest Solar gains in wat Total gains - inter	247.54 tts ∑(74)m 46.67 rnal and so 294.21 al tempera	79.50 blar (73)m + 325.50 sture (heating periods in	237.86 Access f Table 0.77 108.77 (83)m 346.63 ng season) the living a	224.94 Factor 6d 7 x 134.78 359.71	212.22 Area m² 5.72 150.96 363.18	72)m 199.67 Sol: W 149.87 349.54	191.33 ar flux V/m² 6.79 x 144.49	spec or T 0.9 x (g ific data able 6b 0.40 x 117.78	FF specific o or Table 0.80 87.86	230.20 data 6c 55.90	241.05 Gains W 46.67 39.94 280.99] (73)] (79)] (83)
6. Solar gains SouthWest Solar gains in wat Total gains - inter 7. Mean interna Temperature duri	247.54 tts Σ(74)m 46.67 rnal and so 294.21 al temperating heating Jan	79.50 blar (73)m + 325.50 sture (heating periods in Feb	237.86 Access f Table 0.77 108.77 (83)m 346.63 ng season) the living a	224.94 factor 6d 7 x 134.78 359.71 Apr	212.22 Area m² 5.72 150.96 363.18 Table 9, Th1 May	72)m 199.67 Sola W 149.87	191.33 ar flux v/m² 6.79 x	195.67 spec or T 0.9 x (g ific data able 6b 0.40 x	FF specific or or Table 0.80	230.20 data 6c = 55.90	241.05 Gains W 46.67 39.94] (73)] (79)] (83)] (84)
6. Solar gains SouthWest Solar gains in wat Total gains - inter	tts ∑(74)m 46.67 rnal and so 294.21 al tempera ing heating Jan for gains f	79.50 clar (73)m + 325.50 sture (heating periods in Feb	237.86 Access f Table 0.77 108.77 (83)m 346.63 ng season) the living a Mar ea n1,m (se	224.94 factor 6d 7 x 134.78 359.71 area from T Apr e Table 9a)	212.22 Area m² 5.72 150.96 363.18 Table 9, Th1 May	72)m 199.67 Sol: W 149.87 349.54 L(°C) Jun	191.33 ar flux V/m² 6.79 x 144.49 Jul	spec or T 0.9 x (g ific data able 6b 0.40 x 117.78	FF specific or Table 0.80 87.86 303.08	230.20 data 6c 55.90 286.10	241.05 Gains W 46.67 39.94 280.99 21.00 Dec] (73)] (79)] (83)] (84)
6. Solar gains SouthWest Solar gains in wat Total gains - inter 7. Mean interna Temperature duri	247.54 tts Σ(74)m 46.67 rnal and so 294.21 al tempera ing heating Jan for gains f 0.99	79.50 lar (73)m + 325.50 sture (heating periods in Feb for living are 0.97	237.86 Access f Table 0.77 108.77 (83)m 346.63 Ing season) the living a Mar ea n1,m (se	224.94 factor 6d 7 x 134.78 359.71 area from T Apr e Table 9a) 0.85	212.22 Area m² 5.72 150.96 363.18 Table 9, Th1 May 0.69	72)m 199.67 Sol: W 149.87 349.54	191.33 ar flux V/m² 6.79 x 144.49	spec or T 0.9 x (g ific data able 6b 0.40 x 117.78	FF specific o or Table 0.80 87.86	230.20 data 6c 55.90	241.05 Gains W 46.67 39.94 280.99] (73)] (79)] (83)] (84)

									1	1			_
	20.53	20.65	20.79	20.93	20.99	21.00	21.00	21.00	21.00	20.93	20.72	20.51	(87)
emperature du			1			1 1		1	1		1	1	٦
	20.32	20.32	20.32	20.34	20.34	20.35	20.35	20.36	20.35	20.34	20.33	20.33	(88)
Jtilisation facto		1		1				T	1		1	1	٦.,
	0.99	0.97	0.92	0.82	0.64	0.44	0.30	0.32	0.53	0.82	0.96	0.99	(89)
Mean internal t	_		_				1		1			1	7
	19.70	19.87	20.07	20.26	20.33	20.35	20.35	20.36	20.35	20.27	19.99	19.68] (90]
iving area fract									Li	ving area ÷	(4) =	0.49	(91)
Mean internal t	_			_				1			1	1	7
	20.10	20.25	20.42	20.58	20.65	20.67	20.67	20.67	20.66	20.59	20.35	20.08	(92)
Apply adjustme					ible 4e whe	ere appropri	iate				1	1	7
	20.10	20.25	20.42	20.58	20.65	20.67	20.67	20.67	20.66	20.59	20.35	20.08	(93)
8. Space heati	ng requirem	ent											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Jtilisation facto					,	••••		16	336			200	
	0.98	0.97	0.93	0.83	0.66	0.46	0.32	0.35	0.55	0.83	0.96	0.99	(94)
Jseful gains, ηn						0.10	0.52	0.55	0.55	0.03	0.50	0.55] (3)
,	289.46	314.62	321.18	297.42	240.51	162.21	108.90	113.80	176.33	252.47	274.89	277.46	(95
Monthly averag					240.51	102.21	100.50	113.00	170.33	232.47	274.03	277.40	_ (55)
,	4.30	4.90	6.50	8.90	11.70	14.60	16.60	16.40	14.10	10.60	7.10	4.20	(96
leat loss rate fo							10.00	10.40	14.10	10.00	7.10	4.20] (50
	446.13	431.54	389.85	320.67	244.59	162.44	108.91	113.82	177.17	273.16	365.07	441.23	(97
pace heating r							100.31	113.02	177.17	273.10	303.07	441.23] (3)
, , , , , , , , , , , , , , , , , , ,	116.57	78.57	51.09	16.74	3.04	0.00	0.00	0.00	0.00	15.39	64.93	121.84	7
	110.57	70.37	32.03	10.71	3.01	1 0.00	0.00	0.00		8)15, 10		468.17	」](98
Space heating r	equirement	kWh/m²/v	ear						2(3)		÷ (4)	12.00] (99 <u>)</u>
		,,								(0.07	. (. /		
9b. Energy req	quirements -	communit	y heating s	cheme									
raction of space	ce heat from	secondary	/supplemei	ntary syste	m (table 11	L)				'0' if r	none	0.00	(30
raction of space	ce heat from	communit	y system							1 - (30	01) =	1.00	(30
raction of com	munity heat	from boile											(30
raction of com			ers									0.14	_ `
	imunity heat		ers									0.14	_
raction of tota	•	from CHP								(302) x (303	3a) =		(30:
	I space heat	from CHP	nunity CHP							(302) x (303 (302) x (303		0.86	(30)
raction of tota	I space heat	from CHP from comn from comn	munity CHP munity boile	ers	ımunity spa	ace heating						0.86	(30)
Fraction of tota	I space heat I space heat ol and charg	from CHP from comn from comn ging method	nunity CHP nunity boile d (Table 4c(ers (3)) for com		ace heating						0.86 0.86 0.14	(30: (30: (30: (30:
raction of tota actor for contr actor for charg	Il space heat Il space heat rol and charg ging method	from CHP from comn from comn ging method (Table 4c(3	munity CHP munity boile d (Table 4c(3)) for comn	ers (3)) for com munity wate	er heating	ace heating						0.86 0.86 0.14 1.00	(30) (30) (30) (30) (30)
raction of tota actor for contr actor for charg	Il space heat Il space heat rol and charg ging method	from CHP from comn from comn ging method (Table 4c(3	munity CHP munity boile d (Table 4c(3)) for comn	ers (3)) for com munity wate	er heating	ace heating						0.86 0.86 0.14 1.00	(30) (30) (30) (30) (30)
raction of tota factor for contr factor for charg Distribution loss	I space heat I space heat ol and charg ging method	from CHP from comn from comn ging method (Table 4c(3	munity CHP munity boile d (Table 4c(3)) for comn	ers (3)) for com munity wate	er heating	ace heating						0.86 0.86 0.14 1.00	(30) (30) (30) (30) (30)
Fraction of tota Factor for contr Factor for charg Distribution loss	Il space heat Il space heat rol and charg ging method s factor (Tab	from CHP from comn from comn ging method (Table 4c(3 ale 12c) for d	munity CHP munity boile d (Table 4c(3)) for comn	ers (3)) for com munity wate	er heating	ace heating						0.86 0.86 0.14 1.00	(30) (30) (30) (30) (30) (30)
Fraction of tota Factor for contr Factor for charg Distribution loss Space heating Annual space he	Il space heat Il space heat rol and charg ging method s factor (Tab	from CHP from comn from comn ging method (Table 4c(3 ale 12c) for d	munity CHP munity boile d (Table 4c(3)) for comn	ers (3)) for com munity wate	er heating	ace heating			468.17		3b) =	0.86 0.86 0.14 1.00	(30) (30) (30) (30) (30) (30)
Fraction of tota factor for contr factor for charg Distribution loss Frace heating Annual space heat	Il space heat Il space heat rol and charg ging method s factor (Tab eating requir	from CHP from comn from comn ging method (Table 4c(3 ale 12c) for d	munity CHP munity boile d (Table 4c(3)) for comn	ers (3)) for com munity wate	er heating	ace heating		(98	468.17 3) x (304a) :	(302) x (303	3b) =	0.86 0.86 0.14 1.00 1.00 1.15	(30. (30.
Fraction of tota Factor for contr Factor for charg Distribution loss Frace heating Annual space heat	Il space heat Il space heat rol and charg ging method s factor (Tab eating requir	from CHP from comn from comn ging method (Table 4c(3 ale 12c) for d	munity CHP munity boile d (Table 4c(3)) for comn	ers (3)) for com munity wate	er heating	ace heating		(98	468.17 3) x (304a) :	(302) x (303) x (305) x (30	3b) =	0.86 0.86 0.14 1.00 1.00 1.15	(30) (30) (30) (30) (30) (30) (98) (30)
Fraction of total Fraction of total Fraction of total Factor for control Factor for charge Distribution loss Space heating Annual space heat from Space heat from Water heating	Il space heat Il space heat rol and charg ging method s factor (Tab eating requir	from CHP from comn from comn ging method (Table 4c(3 ale 12c) for d	munity CHP munity boile d (Table 4c(3)) for comn	ers (3)) for com munity wate	er heating	ace heating		(98	468.17 3) x (304a) :	(302) x (303) x (305) x (30	3b) =	0.86 0.86 0.14 1.00 1.00 1.15	(30) (30) (30) (30) (30) (30) (98) (30)
Fraction of tota Factor for contr Factor for charg Distribution loss Space heating Annual space he Space heat from Space heat from	Il space heat Il space heat rol and charg ging method s factor (Tab eating requir n CHP n boilers	from CHP from comm from comm ging method (Table 4c(3 le 12c) for d	munity CHP munity boile d (Table 4c(3)) for comn	ers (3)) for com munity wate	er heating	ace heating		(98 (98	468.17 3) x (304a) :	(302) x (303) x (305) x (30	3b) =	0.86 0.86 0.14 1.00 1.00 1.15	(30) (30) (30) (30) (30) (30) (98) (30) (30)
Fraction of tota Factor for contr Factor for charg Distribution loss Face heating Annual space he Space heat fron Space heat fron	Il space heat Il space heat Il space heat rol and charg ging method s factor (Tab eating requir n CHP n boilers	from CHP from comm from comm ging method (Table 4c(3 le 12c) for d	munity CHP munity boile d (Table 4c(3)) for comn	ers (3)) for com munity wate	er heating	ace heating		(98 (98	468.17 3) x (304a) : 3) x (304b) :	(302) x (303) x (305) x (30 x (305) x (30	3b) =	0.86 0.86 0.14 1.00 1.00 1.15	(30.) (30.) (30.) (30.) (30.) (30.) (98.) (30.) (30.)
Fraction of tota Factor for contractor for chargo Distribution loss Face heating Annual space heat from Space heat from Water heating Annual water heat	Il space heat Il	from CHP from comm from comm ging method (Table 4c(3 le 12c) for d	munity CHP munity boile d (Table 4c(3)) for comn	ers (3)) for com munity wate	er heating	ace heating		(98 (98 1 (64)	468.17 3) x (304a) : 3) x (304b) : 327.68 x (303a) x	(302) x (303) x (305) x (30	3b) = 06) = 06) =	0.86 0.86 0.14 1.00 1.00 1.15 463.02 75.38	(64) (301) (302) (303) (304) (98) (307) (64) (311) (311)

Electricity for pumps, fans and electric keep-hot (Table 4f)

mechanical ventilation fans - balanced, extract or positive input from outside

171.29 (330a)

Total electricity for the above, kWh/year

171.29 (331)

(332)

Electricity for lighting (Appendix L)

193.78

Total delivered energy for all uses

(307) + (309) + (310) + (312) + (315) + (331) + (332)...(337b) = 2430.29 (338)

10b. Fue	l costs -	communit	ty l	heati	ing sc	heme
----------	-----------	----------	------	-------	--------	------

	Fuel kWh/year		Fuel price		Fuel cost £/year	
Space heating from CHP	463.02	х	2.97	x 0.01 =	13.75	(340a)
Space heating from boilers	75.38	х	4.24	x 0.01 =	3.20	(340b)
Water heating from CHP	1313.08	x	2.97	x 0.01 =	39.00	(342a)
Water heating from boilers	213.76	x	4.24	x 0.01 =	9.06	(342b)
Pumps and fans	171.29	x	13.19	x 0.01 =	22.59	(349)
Electricity for lighting	193.78	x	13.19	x 0.01 =	25.56	(350)
Additional standing charges					120.00	(351)
Total energy cost			(340a)(342e) +	- (345)(354) =	233.16	(355)

11b. SAP rating - community heating scheme

Energy cost	deflator	(Table	12)
-------------	----------	--------	-----

Energy cost factor (ECF)

SAP value

SAP rating (section 13)

SAP band

0.42	(356)

1.17 (357)

84 (358)

В

12b. CO ₂ emissions - commu	nity heating scheme						
		Energy		Emission factor		Emissions	
		kWh/year				(kg/year)	
Emissions from community CH	IP (space and water heating)						
Power efficiency of CHP unit		35.70					(361)
Heat efficiency of CHP unit		41.77					(362)
Space heating from CHP	(307a) × 100 ÷ (362) =	1108.5112	X	0.2160	=	239.4384	(363)
less credit emissions for ele	ectricity	-395.7436	Х	0.5190	=	-205.3909	(364)
Water heated by CHP		3143.6207	X	0.2160	= [679.0221	(365)
less credit emissions for ele	ectricity	-1122.2871	X	0.5190	=	-582.4670	(366)
Emissions from other sources	(space heating)						
Efficiency of boilers		86.00					(367b)
CO2 emissions from boilers	[(307b)+(310b)] x 100 ÷ (367b) =	336.20	X	0.216	=	72.62	(368)
Electrical energy for communi	ty heat distribution	20.65	x	0.519	=	10.72	(372)
Total CO2 associated with com	nmunity systems					213.94	(373)
Total CO2 associated with spa-	ce and water heating					213.94	(376)
Pumps and fans		171.29	X	0.519	=	88.90	(378)
Electricity for lighting		193.78	x	0.519	=	100.57	(379)
Total CO₂, kg/year					(376)(382) =	403.41	(383)
Dwelling CO ₂ emission rate					(383) ÷ (4) =	10.34	(384)
EI value						93.56	
EI rating (section 14)						94	(385)

Dwelling primary energy rate kWh/m2/year

13b. Primary energy - community heating scheme					
	Energy kWh/year		Primary factor		Primary energy (kWh/year)
Primary Energy from community CHP (space and water heating	g)				
Power efficiency of CHP unit	35.70				(361)
Heat efficiency of CHP unit	41.77				(362)
Space heating from CHP $(307a) \times 100 \div (362)$	= 1108.51	x	1.22	=	1352.38 (363)
less credit energy for electricity	-395.74	x	3.07	=	-1214.93 (<mark>364)</mark>
Water heated by CHP	3143.62	x	1.22	=	3835.22 (365)
less credit energy for electricity	-1122.29	x	3.07	=	-3445.42 (366)
Primary energy from other sources (space heating)					
Efficiency of boilers	86.00				(367b)
Primary energy from boilers [(307b)+(310b)] x 100 ÷ (367b)) = 336.20	x	1.22	=	410.16 (368)
Electrical energy for community heat distribution	20.65	x	3.07	=	63.40 (372)
Total primary energy associated with community systems					1000.81 (373)
Total primary energy associated with space and water heating					1000.81 (376)
Pumps and fans	171.29	x	3.07	=	525.85 (378)
Electricity for lighting	193.78	x	3.07	=	594.89 (379)
Primary energy kWh/year					2121.56 (383)

This design submission has been carried out using Approved SAP software. It has been prepared from plans and specifications and may not reflect the property as constructed.

Assessor name	Mr Orestis Angelidis	Assessor number	1
Client		Last modified	26/11/2018
Address	A 2B4P A Charlton Riverside, London, SE10 0NU		

Client								Last modified	d	26/11,	/2018	
Address	A 2B4P A	Charlton R	iverside, Lo	ondon, SE1	10 0NU							
1. Overall dwelling dimens	ions											
				Δ.	Area (m²)		,	Average storey height (m)	'	Vo	lume (m³)	
Lowest occupied					66.00	(1a) x		3.00	(2a) =		198.00	(3a)
Total floor area	(1a)	+ (1b) + (1d	c) + (1d)(1n) =	66.00	(4)						
Dwelling volume								(3a) + (3b) + (3	3c) + (3d)(3n)	=	198.00	(5)
2. Ventilation rate												
										m³	per hour	
Number of chimneys								0	x 40 =		0	(6a)
Number of open flues								0	x 20 =		0	(6b)
Number of intermittent fans	5							0	x 10 =		0	(7a)
Number of passive vents								0	x 10 =		0	(7b)
Number of flueless gas fires								0	x 40 =		0	(7c)
										Air c	hanges pe hour	r
Infiltration due to chimneys	, flues, fans	s, PSVs		(6a)) + (6b) + (7	a) + (7b) + (7c) =	0	÷ (5) =		0.00	(8)
If a pressurisation test has b	een carrie	d out or is in	ntended, pi	roceed to ((17), otherw	vise continue	e from	(9) to (16)	_			_
Air permeability value, q50,	expressed	in cubic me	etres per h	our per sq	uare metre	of envelope	e area				3.00	(17)
If based on air permeability	value, ther	n (18) = [(17	') ÷ 20] + (8	3), otherwi	se (18) = (1	6)					0.15	(18)
Number of sides on which the	ne dwelling	g is sheltere	d								3	(19)
Shelter factor								1	- [0.075 x (19)]	=	0.78	(20)
Infiltration rate incorporating	g shelter f	actor							(18) x (20)	=	0.12	(21)
Infiltration rate modified for	monthly v	wind speed:										
Jan	Feb	Mar	Apr	May	Jun	Jul	Au	g Sep	Oct	Nov	Dec	
Monthly average wind spee	d from Tab	ole U2										
5.10	5.00	4.90	4.40	4.30	3.80	3.80	3.7	0 4.00	4.30	4.50	4.70	(22)
Wind factor (22)m ÷ 4												
1.28	1.25	1.23	1.10	1.08	0.95	0.95	0.9	3 1.00	1.08	1.13	1.18	(22a)
Adjusted infiltration rate (al	lowing for	shelter and	wind facto	or) (21) x (2	22a)m							
0.15	0.15	0.14	0.13	0.12	0.11	0.11	0.1	1 0.12	0.12	0.13	0.14	(22b)
Calculate effective air change	ge rate for t	the applical	ole case:									
If mechanical ventilation	: air chang	e rate throu	ıgh system								0.50	(23a)
If balanced with heat rec	overy: effi	ciency in %	allowing fo	or in-use fa	ctor from T	able 4h					76.50	(23c)
a) If balanced mechanica	l ventilatio	n with heat	recovery	(MVHR) (2	2b)m + (23	b) x [1 - (23d	c) ÷ 100)]				
												_

0.27

0.27

0.26

0.26

Effective air change rate - enter (24a) or (24b) or (24c) or (24d) in (25)

0.26

0.26

0.25

0.25

0.24

0.24

0.25

0.25

(24a)

(25)

0.23

0.23

0.23

0.23

0.23

0.23

0.23

0.23

0.24

0.24

0.25

5. Heat losses	s and heat lo	ss paramet	er										
Element			i	Gross area, m²	Openings m ²	Net a		U-value W/m²K	AxUW		/alue, /m².K	Αxκ, kJ/K	
Door						1.8	89 x	1.00	= 1.89				(26)
Window						9.8	88 x	1.33	= 13.10)			(27)
External wall						14.	.12 x	0.18	= 2.54				(29a)
Party wall						72.	.36 x	0.00	= 0.00				(32)
Total area of e	xternal elem	ents ∑A, m²	2			25.	.89						(31)
Fabric heat los	ss, W/K = ∑(A	× U)							(2	6)(30) + (32) =	17.53	(33)
Heat capacity (Cm = ∑(A x к)							(28).	(30) + (32)	+ (32a)(3	2e) =	N/A	(34)
Thermal mass	parameter (T	MP) in kJ/r	n²K									250.00	(35)
Thermal bridge	es: ∑(L x Ѱ) ca	alculated us	sing Apper	ndix K								2.03	(36)
Total fabric hea	at loss									(33) + (36) =	19.56	(37)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Ventilation hea	at loss calcula	ated month	ly 0.33 x (25)m x (5)									
	17.36	17.17	16.98	16.03	15.84	14.89	14.89	14.70	15.27	15.84	16.22	16.60	(38)
Heat transfer o	coefficient, W	//K (37)m +	+ (38)m										
	36.92	36.73	36.54	35.59	35.40	34.46	34.46	34.27	34.84	35.40	35.78	36.16	
									Average = 3	∑(39)112,	/12 =	35.55	(39)
Heat loss parar	meter (HLP),	W/m²K (39	9)m ÷ (4)										
	0.56	0.56	0.55	0.54	0.54	0.52	0.52	0.52	0.53	0.54	0.54	0.55	
									Average =	∑(40)112,	/12 =	0.54	(40)
Number of day	ys in month (Table 1a)											
	31.00	28.00	31.00	30.00	31.00	30.00	31.00	31.00	30.00	31.00	30.00	31.00	(40)
4 Water heat													
II TTUTEL IIIGU	ting energy r	equiremen	t										
	ting energy r	equiremen	t									2 15	(42)
Assumed occup	pancy, N			Vd average	e = (25 x N) +	36						2.15	(42)
	pancy, N e hot water ι	ısage in litr	es per day				Jul	Aug	Sep	Oct	Nov	85.15	(42) (43)
Assumed occup Annual average	pancy, N e hot water u Jan	usage in litro Feb	es per day Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov		= -
Assumed occup	pancy, N e hot water u Jan ge in litres pe	ısage in litr Feb er day for ea	es per day Mar ach month	Apr Vd,m = fact	May tor from Tab	Jun le 1c x (43)					85.15 Dec	= -
Assumed occup Annual average	pancy, N e hot water u Jan	usage in litro Feb	es per day Mar	Apr	May	Jun		Aug 80.04	Sep 83.45	86.85	90.26	85.15 Dec	(43)
Assumed occup Annual average Hot water usag	pancy, N e hot water u Jan ge in litres pe 93.66	r day for ea	es per day Mar ach month 86.85	Apr Vd,m = fact 83.45	May tor from Tab 80.04	Jun le 1c x (43 76.63	76.63	80.04			90.26	85.15 Dec	= -
Assumed occup Annual average	pancy, N e hot water u Jan ge in litres pe 93.66 t of hot wate	r used = 4.2	es per day Mar ach month 86.85	Apr Vd,m = fact 83.45 x nm x Tm/3	May tor from Tab 80.04 8600 kWh/m	Jun le 1c x (43 76.63 nonth (see	76.63 Tables 1b	80.04 , 1c 1d)	83.45	86.85 ∑(44)1	90.26	85.15 Dec 93.66 1021.79	(43)
Assumed occup Annual average Hot water usag	pancy, N e hot water u Jan ge in litres pe 93.66	r day for ea	es per day Mar ach month 86.85	Apr Vd,m = fact 83.45	May tor from Tab 80.04	Jun le 1c x (43 76.63	76.63	80.04		86.85 ∑(44)1	90.26	85.15 Dec 93.66 1021.79 134.52	(43)
Assumed occup Annual average Hot water usage Energy content	pancy, N e hot water u Jan ge in litres pe 93.66 t of hot wate 138.90	r used = 4.1	es per day Mar ach month 86.85	Apr Vd,m = fact 83.45 x nm x Tm/3	May tor from Tab 80.04 8600 kWh/m	Jun le 1c x (43 76.63 nonth (see	76.63 Tables 1b	80.04 , 1c 1d)	83.45	86.85 ∑(44)1	90.26	85.15 Dec 93.66 1021.79	(43)
Assumed occup Annual average Hot water usag	pancy, N e hot water u Jan ge in litres pe 93.66 t of hot wate 138.90 ss 0.15 x (45	r used = 4.3 121.48	es per day Mar ach month 86.85 18 x Vd,m 125.36	Apr Vd,m = fact 83.45 x nm x Tm/3 109.29	May tor from Tab 80.04 3600 kWh/m 104.87	Jun le 1c x (43 76.63 nonth (see	76.63 Tables 1b 83.86	80.04 , 1c 1d) 96.23	97.38	86.85 Σ(44)1 113.48 Σ(45)1	90.26 .12 =	85.15 Dec 93.66 1021.79 134.52 1339.73	(43)
Assumed occup Annual average Hot water usage Energy content	pancy, N e hot water u Jan ge in litres pe 93.66 t of hot wate 138.90 ss 0.15 x (45	r used = 4.2 121.48	es per day Mar ach month 86.85 18 x Vd,m 125.36	Apr Vd,m = fact 83.45 x nm x Tm/3 109.29	May tor from Tab 80.04 3600 kWh/m 104.87	Jun le 1c x (43 76.63 nonth (see 90.49	76.63 Tables 1b	80.04 , 1c 1d)	83.45	86.85 ∑(44)1	90.26	85.15 Dec 93.66 1021.79 134.52 1339.73	(43)
Assumed occup Annual average Hot water usage Energy content Distribution los	pancy, N e hot water u Jan ge in litres pe 93.66 t of hot wate 138.90 ss 0.15 x (45 20.84 e (litres) include	r used = 4.2 121.48	es per day Mar ach month 86.85 18 x Vd,m 125.36	Apr Vd,m = fact 83.45 x nm x Tm/3 109.29	May tor from Tab 80.04 3600 kWh/m 104.87	Jun le 1c x (43 76.63 nonth (see 90.49	76.63 Tables 1b 83.86	80.04 , 1c 1d) 96.23	97.38	86.85 Σ(44)1 113.48 Σ(45)1	90.26 .12 =	85.15 Dec 93.66 1021.79 134.52 1339.73	(43)
Assumed occup Annual average Hot water usage Energy content Distribution los Storage volume Water storage	pancy, N e hot water u Jan ge in litres pe 93.66 t of hot wate 138.90 ss 0.15 x (45 20.84 e (litres) includes	r day for ea 90.26 r used = 4.2 121.48)m 18.22 uding any so	es per day Mar ach month 86.85 18 x Vd,m 125.36 18.80 olar or WV	Apr Vd,m = fact 83.45 x nm x Tm/3 109.29 16.39 VHRS storage	May tor from Tab 80.04 3600 kWh/m 104.87 15.73 ge within sam	Jun le 1c x (43 76.63 nonth (see 90.49	76.63 Tables 1b 83.86	80.04 , 1c 1d) 96.23	97.38	86.85 Σ(44)1 113.48 Σ(45)1	90.26 .12 =	85.15 Dec 93.66 1021.79 134.52 1339.73 20.18 0.00	(43) (44) (45) (46) (47)
Assumed occup Annual average Hot water usage Energy content Distribution los Storage volume Water storage a) If manufacture	pancy, N e hot water u Jan ge in litres pe 93.66 t of hot wate 138.90 ss 0.15 x (45 20.84 e (litres) includes: urer's declare	r used = 4.2 121.48 In the second of the s	es per day Mar ach month 86.85 18 x Vd,m 125.36 18.80 olar or WV	Apr Vd,m = fact 83.45 x nm x Tm/3 109.29 16.39 VHRS storage	May tor from Tab 80.04 3600 kWh/m 104.87 15.73 ge within sam	Jun le 1c x (43 76.63 nonth (see 90.49	76.63 Tables 1b 83.86	80.04 , 1c 1d) 96.23	97.38	86.85 Σ(44)1 113.48 Σ(45)1	90.26 .12 =	85.15 Dec 93.66 1021.79 134.52 1339.73 20.18 0.00 0.00	(43) (44) (45) (46) (47) (48)
Assumed occup Annual average Hot water usage Energy content Distribution los Storage volume Water storage a) If manufactur Temperatur	pancy, N e hot water u Jan ge in litres pe 93.66 t of hot wate 138.90 ss 0.15 x (45 20.84 e (litres) includes: urer's declared	r used = 4.3 121.48 m 18.22 uding any solution Table 2b	es per day Mar ech month 86.85 18 x Vd,m 125.36 18.80 olar or WV	Apr Vd,m = fact 83.45 x nm x Tm/3 109.29 16.39 VHRS storage n (kWh/day)	May tor from Tab 80.04 3600 kWh/m 104.87 15.73 ge within sam	Jun le 1c x (43 76.63 nonth (see 90.49	76.63 Tables 1b 83.86	80.04 , 1c 1d) 96.23	97.38	86.85 Σ(44)1 113.48 Σ(45)1	90.26 .12 =	85.15 Dec 93.66 1021.79 134.52 1339.73 20.18 0.00 0.00 1.00	(43) (44) (45) (46) (47) (48) (49)
Assumed occup Annual average Hot water usage Energy content Distribution los Storage volume Water storage a) If manufactu Temperatur Energy lost	pancy, N e hot water u Jan ge in litres pe 93.66 t of hot wate 138.90 ss 0.15 x (45 20.84 e (litres) included loss: urer's declared refactor from water s	r used = 4.3 121.48 m 18.22 uding any solution Table 2b	es per day Mar ech month 86.85 18 x Vd,m 125.36 18.80 olar or WV	Apr Vd,m = fact 83.45 x nm x Tm/3 109.29 16.39 VHRS storage n (kWh/day)	May tor from Tab 80.04 3600 kWh/m 104.87 15.73 ge within sam	Jun le 1c x (43 76.63 nonth (see 90.49	76.63 Tables 1b 83.86	80.04 , 1c 1d) 96.23	97.38	86.85 Σ(44)1 113.48 Σ(45)1	90.26 .12 =	85.15 Dec 93.66 1021.79 134.52 1339.73 20.18 0.00 0.00 1.00 0.00	(43) (44) (45) (46) (47) (48) (49) (50)
Assumed occup Annual average Hot water usage Energy content Distribution los Storage volume Water storage a) If manufactu Energy lost Enter (50) or (50)	pancy, N e hot water u Jan ge in litres pe 93.66 t of hot wate 138.90 ss 0.15 x (45 20.84 e (litres) includes: urer's declared refactor from water seconds.	r used = 4.2 121.48 m 18.22 uding any solutions factor age (kW. storage (kW. seb.)	es per day Mar ach month 86.85 18 x Vd,m 125.36 18.80 olar or WV	Apr Vd,m = fact 83.45 x nm x Tm/3 109.29 16.39 VHRS storage n (kWh/day) 8) x (49)	May tor from Tab 80.04 3600 kWh/m 104.87 15.73 ge within sam	Jun le 1c x (43 76.63 nonth (see 90.49	76.63 Tables 1b 83.86	80.04 , 1c 1d) 96.23	97.38	86.85 Σ(44)1 113.48 Σ(45)1	90.26 .12 =	85.15 Dec 93.66 1021.79 134.52 1339.73 20.18 0.00 0.00 1.00	(43) (44) (45) (46) (47) (48) (49)
Assumed occup Annual average Hot water usage Energy content Distribution los Storage volume Water storage a) If manufactu Temperatur Energy lost	pancy, N e hot water u Jan ge in litres pe 93.66 t of hot wate 138.90 ss 0.15 x (45 20.84 e (litres) included to second	r used = 4.2 121.48 18.22 Iding any solutions factor Table 2b storage (kW)	es per day Mar ach month 86.85 18 x Vd,m 125.36 18.80 olar or WV or is known /h/day) (4	Apr Vd,m = fact 83.45 x nm x Tm/3 109.29 16.39 VHRS storage n (kWh/day) 8) x (49) 5) x (41)m	May tor from Tab 80.04 3600 kWh/m 104.87 15.73 ge within sam	Jun le 1c x (43 76.63 nonth (see 90.49 13.57 ne vessel	76.63 Tables 1b 83.86	80.04 , 1c 1d) 96.23	97.38	86.85 Σ(44)1 113.48 Σ(45)1 17.02	90.26 .12 =	85.15 Dec 93.66 1021.79 134.52 1339.73 20.18 0.00 0.00 1.00 0.00 0.00	(43) (44) (44) (45) (46) (47) (48) (49) (50) (55)
Assumed occup Annual average Hot water usage Energy content Distribution los Storage volume Water storage a) If manufactur Energy lost Enter (50) or (5) Water storage	pancy, N e hot water to Jan ge in litres per 93.66 t of hot water 138.90 ss 0.15 x (45) 20.84 te (litres) includes: urer's declared refactor from water series from water series 54) in (55) loss calculater 0.00	r used = 4.3 121.48 m 18.22 uding any so and loss factor and Table 2b storage (kW) ed for each 0.00	es per day	Apr Vd,m = fact 83.45 x nm x Tm/3 109.29 16.39 VHRS storage n (kWh/day) 8) x (49) 5) x (41)m 0.00	May tor from Tab 80.04 3600 kWh/m 104.87 15.73 ge within sam	Jun le 1c x (43 76.63 nonth (see 90.49 13.57 ne vessel	76.63 Tables 1b 83.86 12.58	80.04 , 1c 1d) 96.23 14.43	97.38	86.85 Σ(44)1 113.48 Σ(45)1	90.26 .12 =	85.15 Dec 93.66 1021.79 134.52 1339.73 20.18 0.00 0.00 1.00 0.00	(43) (44) (44) (45) (46) (47) (48) (49) (50)
Assumed occup Annual average Hot water usage Energy content Distribution los Storage volume Water storage a) If manufactu Energy lost Enter (50) or (50)	pancy, N e hot water u Jan ge in litres pe 93.66 t of hot wate 138.90 ss 0.15 x (45 20.84 e (litres) includes: urer's declared refactor from water series and contains dedicated to the contains dedic	r used = 4.2 121.48 18.22 Idling any solution Table 2b storage (kW) 10.00 ated solar solutions	es per day Mar ach month 86.85 18 x Vd,m 125.36 18.80 olar or WV or is known /h/day) (4 month (5 0.00 torage or	Apr Vd,m = fact 83.45 x nm x Tm/3 109.29 16.39 VHRS storage (kWh/day) 8) x (49) 5) x (41)m 0.00 dedicated V	tor from Tab 80.04 3600 kWh/m 104.87 15.73 ge within sam 0.00 VWHRS (56)r	Jun le 1c x (43 76.63 nonth (see 90.49 13.57 ne vessel 0.00 m x [(47) -	76.63 Tables 1b 83.86 12.58 0.00 Vs] ÷ (47)	80.04 , 1c 1d) 96.23 14.43 0.00 , else (56)	97.38	86.85 Σ(44)1 113.48 Σ(45)1 17.02	90.26 .12 =	85.15 Dec 93.66 1021.79 134.52 1339.73 20.18 0.00 0.00 0.00 0.00 0.00 0.00	(43) (44) (44) (45) (46) (47) (48) (49) (50) (55)
Assumed occup Annual average Hot water usage Energy content Distribution los Storage volume Water storage a) If manufactu Energy lost Enter (50) or (5) Water storage	pancy, N e hot water to Jan ge in litres per 93.66 t of hot water 138.90 ss 0.15 x (45) 20.84 se (litres) included to the control of the c	r used = 4 121.48 m 18.22 uding any solution Table 2b storage (kW) ed for each 0.00 ated solar solutions 0.00	es per day	Apr Vd,m = fact 83.45 x nm x Tm/3 109.29 16.39 VHRS storage n (kWh/day) 8) x (49) 5) x (41)m 0.00 dedicated V 0.00	May tor from Tab 80.04 3600 kWh/m 104.87 15.73 ge within sam	Jun le 1c x (43 76.63 nonth (see 90.49 13.57 ne vessel	76.63 Tables 1b 83.86 12.58	80.04 , 1c 1d) 96.23 14.43	97.38	86.85 Σ(44)1 113.48 Σ(45)1 17.02	90.26 .12 =	85.15 Dec 93.66 1021.79 134.52 1339.73 20.18 0.00 0.00 1.00 0.00 0.00	(43) (44) (44) (45) (46) (47) (48) (49) (50) (55)

													_
	23.26	21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26	(59)
Combi loss for e	each month i	from Table	3a, 3b or 3	ic									
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(61)
Total heat requi	ired for wate	er heating (calculated f	or each mc	onth 0.85 x	(45)m + (4	6)m + (57)r	n + (59)m +	· (61)m			.1	
	162.16	142.50	148.62	131.80	128.13	113.01	107.12	119.49	119.89	136.74	146.39	157.78	(62)
Color DUM innu			!	!		113.01	107.12	113.43	113.03	130.74	140.55	157.70] (02)
Solar DHW inpu			1	1		т	T		T		г		7
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(63)
Output from wa	ater heater f	or each mo	onth (kWh/i	month) (62	<u>²</u>)m + (63)m	1							
	162.16	142.50	148.62	131.80	128.13	113.01	107.12	119.49	119.89	136.74	146.39	157.78	
										∑(64)1	.12 = 1	1613.63	(64)
Heat gains from	n water heati	ing (kWh/n	nonth) 0.2!	5 × [0.85 ×	(45)m + (61	.)m] + 0.8 ×	[(46)m + (5	57)m + (59)	m]				_
-	64.79	57.20	60.29	54.35	53.48	48.10	46.49	50.61	50.39	56.34	59.20	63.34	(65)
	0 11.73	37.20	00.23	3 1.55	33.10	10.10	10.13	30.01	30.33	30.31	33.20] (03)
5. Internal gair	ns												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Metabolic gains	(Table 5)			•	•			ŭ	•				
victabolic gailis		407.26	107.26	107.26	107.26	107.26	107.26	407.26	407.26	107.26	407.26	107.26	7 (66)
	107.26	107.26	107.26	107.26	107.26	107.26	107.26	107.26	107.26	107.26	107.26	107.26	(66)
ighting gains (c	calculated in	Appendix I	L, equation	L9 or L9a),	also see Ta	ible 5							_
	17.25	15.32	12.46	9.43	7.05	5.95	6.43	8.36	11.22	14.25	16.63	17.73	(67)
Appliance gains	(calculated	in Appendi	ix L, equatio	on L13 or L:	13a), also se	ee Table 5							
	187.79	189.74	184.83	174.37	161.18	148.77	140.49	138.54	143.45	153.90	167.10	179.50	(68)
Cooking gains (c	calculated in	Appendix	L, equation	L15 or L15	a), also see	Table 5					•	-	_
00 (33.73	33.73	33.73	33.73	33.73	33.73	33.73	33.73	33.73	33.73	33.73	33.73	(69)
umn and fan a		l .	33.73	33.73	33.73	33.73	33.73	33.73	33.73	33.73	33.73] (09)
Pump and fan g													7
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	[70]
osses e.g. evap	ooration (Tab	ole 5)											
	-85.81	-85.81	-85.81	-85.81	-85.81	-85.81	-85.81	-85.81	-85.81	-85.81	-85.81	-85.81	(71)
Nater heating g	gains (Table !	5)											
	87.09	85.12	81.04	75.49	71.88	66.80	62.49	68.02	69.98	75.73	82.22	85.13	(72)
Total internal ga			58)m + (69)			72)m						.4	, ,
. o ta:to:a. 8c	347.30			(,,,,,,,	(, =)								
	347.30	1 2/15/26	222 50	21/1/17	205.29	276.71	264 50	270.00	270 92	200.06	221 12	227 54	(72)
C Colon coin		345.36	333.50	314.47	295.28	276.71	264.59	270.09	279.83	299.06	321.12	337.54	(73)
6. Solar gains		345.36	333.50	314.47	295.28	276.71	264.59	270.09	279.83	299.06	321.12	337.54	(73)
6. Solar gains		345.36	'				264.59	270.09			321.12		(73)
6. Solar gains		345.36	333.50 Access f	factor	295.28 Area m²	Sol			279.83 g ific data	299.06 FF specific c		337.54 Gains W	(73)
6. Solar gains		345.36	Access f	factor	Area	Sol	ar flux	speci	g	FF	lata	Gains	(73)
		345.36	Access f	factor e 6d	Area	Sol:	ar flux //m²	speci or Ta	g ific data	FF specific o	lata	Gains	
outhWest	ratts Σ(74)m		Access f Table	factor e 6d	Area m²	Sol:	ar flux //m²	speci or Ta	g ific data able 6b	FF specific o	lata : 6c	Gains W	(73) (79)
SouthWest		(82)m	Access f Table	factor e 6d	Area m² 9.88	Sola W	ar flux //m² 6.79 x	speci or Ta 0.9 x	g ific data able 6b	FF specific c or Table	data 6c =	Gains W	(79)
SouthWest Solar gains in w	80.61	(82)m	Access f Table	factor e 6d	Area m²	Sol:	ar flux //m²	speci or Ta	g ific data able 6b	FF specific o	lata : 6c	Gains W	
SouthWest Solar gains in w	80.61 ernal and so	(82)m 137.32 lar (73)m +	Access f Table 0.7	factor e 6d 7 x 232.80	Area m² 9.88	Sola W x 3	ar flux //m² 6.79 x	speci or Ta 0.9 x (g ific data able 6b 0.40 x	FF specific c or Table 0.80	data : 6c = = =	Gains W 80.61	(79) (83)
SouthWest Solar gains in w	80.61	(82)m	Access f Table	factor e 6d	Area m² 9.88	Sola W	ar flux //m² 6.79 x	speci or Ta 0.9 x	g ific data able 6b	FF specific c or Table	data 6c =	Gains W	(79)
SouthWest Solar gains in wa Fotal gains - inte	80.61 ernal and so 427.92	(82)m 137.32 lar (73)m +	Access f Table 0.7 187.88 - (83)m 521.38	factor e 6d	Area m² 9.88	Sola W x 3	ar flux //m² 6.79 x	speci or Ta 0.9 x (g ific data able 6b 0.40 x	FF specific c or Table 0.80	data : 6c = = =	Gains W 80.61	(79)
SouthWest Solar gains in wa Total gains - into 7. Mean intern	80.61 ernal and so 427.92 nal temperat	(82)m 137.32 lar (73)m + 482.67 ture (heati	Access f Table 0.7 187.88 - (83)m 521.38	factor e 6d 7 x 232.80 547.26	9.88 260.75	Sol: W 3 x 3 258.87	ar flux //m² 6.79 x	speci or Ta 0.9 x (g ific data able 6b 0.40 x	FF specific c or Table 0.80	data : 6c = = =	Gains W 80.61 68.99] (79)] (83)] (84)
SouthWest Solar gains in wa Fotal gains - inte 7. Mean intern	80.61 ernal and so 427.92 nal temperaturing heating	(82)m 137.32 lar (73)m + 482.67 ture (heating periods in	Access f Table 0.7 187.88 (83)m 521.38 Ing season) The living a	factor e 6d 7 x 232.80 547.26	9.88 260.75	Sol: W 3 x 3 258.87	ar flux //m² 6.79 x 249.57	speci or Ta 0.9 x 0 228.72	g ific data able 6b 0.40 x 203.44	FF specific c or Table 0.80 151.76	data e 6c =	Gains W 80.61 68.99 406.53] (79)] (83)
SouthWest Solar gains in was Total gains - into	80.61 ernal and so 427.92 nal temperat	(82)m 137.32 lar (73)m + 482.67 ture (heati	Access f Table 0.7 187.88 - (83)m 521.38	factor e 6d 7 x 232.80 547.26	9.88 260.75	Sol: W 3 x 3 258.87	ar flux //m² 6.79 x	speci or Ta 0.9 x (g ific data able 6b 0.40 x	FF specific c or Table 0.80	data : 6c = = =	Gains W 80.61 68.99	(79) (83) (84)
SouthWest Solar gains in water Total gains - inter Total mean interr Temperature du	80.61 ernal and so 427.92 nal temperaturing heating Jan	137.32 lar (73)m + 482.67 ture (heating periods in Feb	Access f Table 0.7 187.88 (83)m 521.38 Ing season) the living a Mar	factor 2 6d 7 x 232.80 547.26 Apr	9.88 260.75 556.04 Table 9, Th1	Sol: W 3 x 3 258.87 535.57	ar flux //m² 6.79 x 249.57	speci or Ta 0.9 x 0 228.72	g ific data able 6b 0.40 x 203.44	FF specific c or Table 0.80 151.76	data e 6c =	Gains W 80.61 68.99 406.53] (79)] (83)] (84)
SouthWest Solar gains in water Total gains - inter Total fan interr Temperature du	80.61 ernal and so 427.92 nal temperaturing heating Jan	137.32 lar (73)m + 482.67 ture (heating periods in Feb	Access f Table 0.7 187.88 (83)m 521.38 Ing season) the living a Mar	factor 2 6d 7 x 232.80 547.26 Apr	9.88 260.75 556.04 Table 9, Th1	Sol: W 3 x 3 258.87 535.57	ar flux //m² 6.79 x 249.57	speci or Ta 0.9 x 0 228.72	g ific data able 6b 0.40 x 203.44	FF specific c or Table 0.80 151.76	data e 6c =	Gains W 80.61 68.99 406.53] (79)] (83)] (84)
SouthWest Solar gains in water Total gains - inter Total gains - inter Temperature du Utilisation facto	80.61 ernal and so 427.92 nal temperaturing heating Jan or for gains fo	137.32 lar (73)m + 482.67 ture (heating periods in Feb or living are 0.97	Access f Table 0.7 187.88 (83)m 521.38 Ing season) The living a Mar ea n1,m (se	factor 2 6d 7 x 232.80 232.80 347.26 347.26 349 4pr ee Table 9a) 0.77	9.88 260.75 556.04 Table 9, Th1 May 0.59	Sol. w x 3 258.87 535.57	ar flux //m² 6.79 x 249.57 514.16	speci or T: 0.9 x (g ific data able 6b 0.40 x 203.44 483.27	FF specific c or Table 0.80 151.76 450.82	data 6c 96.56 417.68 Nov	Gains W 80.61 68.99 406.53 21.00 Dec] (79)] (83)] (84)] (85)
SouthWest Solar gains in water Total gains - inter Temperature du Utilisation factor Mean internal tr	80.61 ernal and so 427.92 nal temperaturing heating Jan or for gains fo	137.32 lar (73)m + 482.67 ture (heating periods in Feb or living are 0.97	Access f Table 0.7 187.88 (83)m 521.38 Ing season) The living a Mar ea n1,m (se	factor 2 6d 7 x 232.80 232.80 347.26 347.26 349 4pr ee Table 9a) 0.77	9.88 260.75 556.04 Table 9, Th1 May 0.59	Sol. w x 3 258.87 535.57	ar flux //m² 6.79 x 249.57 514.16	speci or T: 0.9 x (g ific data able 6b 0.40 x 203.44 483.27	FF specific c or Table 0.80 151.76 450.82	data 6c 96.56 417.68 Nov	Gains W 80.61 68.99 406.53 21.00 Dec] (79)] (83)] (84)] (85)

Space heating requirement Distribution Space heating requirement Water heating W	Temperature during heati	ng periods in	the rest of	dwelling f	rom Table	9, Th2(°C)							
Mani Internal temperature in the rest of dwelling T2 (follow steps 1 to 7 in Table 9c) Co Co Co Co Co Co Co C				_		_	20.50	20.50	20.50	20.49	20.48	20.48	(88)
Mean internal temperature in the rest of dwelling 12 (follow steps 3 to 7 in Table 9c) 20.06 20.22 20.37 20.47 20.49 20.50 20.50 20.50 20.50 20.47 20.29 20.04 [90 20.09 are fractal temperature for the whole dwelling fl.a. x 11 + [1.4] x 12 20.30 20.44 20.57 20.66 20.68 20.69 20.69 20.69 20.68 20.66 20.50 20.28 [91 20.09 20.09 20.68 20.66 20.50 20.28] Apply adjustment to the mean internal temperature from Table 4e where appropriate 20.30 20.44 20.57 20.66 20.68 20.69 20.69 20.69 20.69 20.68 20.66 20.50 20.28 [91 20.09 20.09 20.68 20.66 20.50 20.28] 8. Space heating requirement Uniform active for gains, ym 20.30 20.44 20.57 20.66 20.68 20.69 20.69 20.69 20.68 20.66 20.50 20.28 [91 20.68 20.66 20.50 20.28] 8. Space heating requirement Uniform active for gains, ym 20.30 20.44 20.57 20.66 20.58 20.69 20.69 20.69 20.69 20.68 20.66 20.50 20.28 [91 20.68 20.66 20.50 20.28] 8. Space heating requirement 4. Su 49.0 6.50 8 80 11.70 14.60 16.60 14.70 22.93 347.84 398.88 402.27 [95 40.70 14.70 14.70 20.77 40.95 40.99 40.77 40.77 40.95 40.99 40.77 40.77 40.95 40.99 40.77 40.77 40.95 40.99 40.77 40.77 40.95 40.99 40.77 40.77 40.95 40.77 40.77 40.95 40.99 40.77 40.77 40.95 40.99 40.77 40.77 40.95 40.99 40.77 40.77 40.95 40.99 40.77 40.77 40.95 40.99 40.77 40.77 40.95 40.99 40.77 40.77 40.95 40.99 40.77 40.77 40.95 40.99 40.77 40.99 40.77 40.99 40.77 40.77 40.95 40.99 40.77 40.77 40.99 40.77 40.77 40.95 40.99 40.77 40.77 40.95 40.99 40.77 40.77 40.99 40.77 40.77 40.95 40.99 40.77 40.77 40.99 40.77 40.77 40.99 40.77 40.77 40.99 40.77 40.77 40.99 40.77 40.77 40.99 40.77 40.77 40.99 40.77 40.77 40.99 40.77 40.77 40.99 40.77 40.7	Utilisation factor for gains	for rest of d	welling n2,	m		•		1	•	1	·	-1	
20.06 20.22 20.37 20.47 20.49 20.50 20.50 20.50 20.47 20.29 20.04 90.04 90.04 90.05 90.04 90.05 90.047 90.29 90.04 90.05 90.04 90.05 90.04 90.05 90.	0.99	0.96	0.89	0.74	0.56	0.38	0.26	0.28	0.46	0.76	0.95	0.99	(89)
Space heating requirement Living area 14] = 0.38 091	Mean internal temperatur	e in the rest	of dwelling	T2 (follow	steps 3 to	7 in Table 9)c)	1	•	•	•		
Space heating requirement Living area 14] = 0.38 091	20.06	20.22	20.37	20.47	20.49	20.50	20.50	20.50	20.50	20.47	20.29	20.04	(90)
Mean internal temperature for the whole dwelling fLA x T1 +(1-fLA) x T2 20 30 20.44 20.57 20.66 20.68 20.69 20.69 20.69 20.68 20.66 20.50 20.28 (92 Apply adjustment to the mean internal temperature from Table 4e where appropriate 20.30 20.44 20.57 20.66 20.68 20.69 20.69 20.69 20.69 20.68 20.66 20.50 20.28 (93 Apply adjustment to the mean internal temperature from Table 4e where appropriate 20.30 20.44 20.57 20.66 20.68 20.69 20.69 20.69 20.68 20.66 20.60 20.50 20.28 (93 Apply adjustment to the mean internal temperature from Table 4u 8. Space heating requirement Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Utilisation factor for gains, mm 20 30 9 0.96 0.90 0.75 0.57 0.39 0.27 0.29 0.47 0.77 0.95 0.99 (94 Oct More) 20.28 (95 Oct More) 20.28 (1	Li	iving area ÷	(4) =	0.38	(91)
20.30 20.44 20.57 20.66 20.68 20.69 20.69 20.69 20.68 20.66 20.50 20.28 92.49ply adjustment to the mean internal temperature from Table 4e where appropriate 20.30 20.44 20.57 20.66 20.68 20.69 20.69 20.69 20.68 20.66 20.50 20.28 93.45	_	e for the wh	ole dwellin	g fLA x T1 +	⊦(1 - fLA) x	T2				J	` ,		_ ` ′
Apply adjustment to the mean internal temperature from Table 4e where appropriate 20.30 20.44 20.57 20.66 20.68 20.69 20.69 20.69 20.68 20.66 20.50 20.28 39.88 30.66 20.50 20.28 39.88 30.66 20.50 20.28 39.88 30.66 20.50 20.28 39.88 30.66 20.50 20.28 39.88 30.66 20.50 20.28 39.88 30.66 20.50 20.28 39.88 30.66 20.50 20.28 39.88 30.66 20.50 20.68 20.68 20.68 20.66 20.50 20.28 39.88 30.62 20.68 20.	-					1	20.69	20.69	20.68	20.66	20.50	20.28	(92)
8. Space heating requirement Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec	Apply adjustment to the m	nean internal	l temperatu	ure from Ta	ble 4e wh	ere appropr	iate	'				· !!	_ ` `
June Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec	20.30	20.44	20.57	20.66	20.68	20.69	20.69	20.69	20.68	20.66	20.50	20.28	(93)
Space heating requirement kWh/m²/year Space heating requirement kWh/m²/year Space heating requirement twh/m²/year Space heating requirement					•	•				•	•	•	_
Unitiation factor for gains, nm 0.99	8. Space heating require	ment											
0.99 0.96 0.90 0.75 0.57 0.39 0.27 0.29 0.47 0.77 0.95 0.99 (94)			Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Seful gains, nmGm, W (94)m x (84)m x (84)m	Jtilisation factor for gains,	, ηm				_							_
421.76	0.99	0.96	0.90	0.75	0.57	0.39	0.27	0.29	0.47	0.77	0.95	0.99	(94)
August Hamilton Space Real Remperature from Table U1 4.30	Jseful gains, ηmGm, W (9	14)m x (84)m							_				_
4.30 4.90 6.50 8.90 11.70 14.60 16.60 16.40 14.10 10.60 7.10 4.20 (96 feet loss rate for mean internal temperature, Lm, W [(39)m x [(93)m - (96)m]	421.76	463.68	467.76	410.65	317.27	209.76	140.86	147.00	229.30	347.84	398.88	402.27	(95)
teat loss rate for mean internal temperature, Lm, W [(39)m × [(93)m - (96)m] 590.66 570.73 514.26 418.67 317.90 209.77 140.86 147.00 229.38 356.27 479.61 581.50 (97) 590.66 570.73 514.26 418.67 317.90 209.77 140.86 147.00 229.38 356.27 479.61 581.50 (97) 590.66 570.73 514.26 418.67 317.90 209.77 140.86 147.00 229.38 356.27 479.61 581.50 (97) 590.66 570.73 514.26 418.67 317.90 209.77 140.86 147.00 229.38 356.27 479.61 581.50 (97) 590.66 570.73 514.26 418.67 317.90 209.77 140.86 147.00 229.38 356.27 479.61 581.50 (97) 590.66 570.73 514.26 418.67 317.90 209.77 140.86 147.00 229.38 356.27 479.61 581.50 (97) 590.66 570.73 514.26 418.67 317.90 209.77 140.86 147.00 229.38 356.27 479.61 581.50 (97) 590.66 570.73 514.26 418.67 317.90 209.77 140.86 147.00 229.38 356.27 479.61 581.50 (98) 598.13 133.34 590.66 570.73 514.26 418.67 317.90 209.77 410.86 429.81 313.34 590.66 570.73 514.26 418.67 317.90 209.77 410.86 429.81 319.81 590.66 570.73 514.26 418.67 317.90 209.77 410.86 429.81 319.81	Monthly average external	temperature	from Table	e U1							_		_
S90.66 S70.73 S14.26 418.67 317.90 209.77 140.86 147.00 229.38 356.27 479.61 S81.50 (97.00) (97.0	4.30	4.90	6.50	8.90	11.70	14.60	16.60	16.40	14.10	10.60	7.10	4.20	(96)
pace heating requirement, kWh/month 0.024 x [(97)m - (95)m] x (41)m 125.66 71.94 34.59 5.78 0.47 0.00 0.00 0.00 0.00 6.28 58.13 133.34 \[\begin{array}{c c c c c c c c c c c c c c c c c c c	leat loss rate for mean in	ternal tempe	rature, Lm	, W [(39)m	ı x [(93)m -	(96)m]		_		_			_
125.66 71.94 34.59 5.78 0.47 0.00 0.00 0.00 0.00 6.28 58.13 133.34	590.66	570.73	514.26	418.67	317.90	209.77	140.86	147.00	229.38	356.27	479.61	581.50	(97)
Signature Sig	pace heating requiremen	t, kWh/mont	th 0.024 x	[(97)m - (9	5)m] x (41)	m				_			_
space heating requirement kWh/m²/year (98) ÷ (4) 6.61 (99) 9b. Energy requirements - community heating scheme Fraction of space heat from secondary/supplementary system (table 11) '0' if none 0.00 (30) Fraction of space heat from community system 1 - (301) = 1.00 (30) Fraction of community heat from boilers 0.14 (30) Fraction of community heat from CHP (302) x (303a) = 0.86 (30) Fraction of total space heat from community boilers (302) x (303b) = 0.14 (30) Fraction of total space heat from community boilers (302) x (303b) = 0.14 (30) Fraction of total space heat from community boilers (302) x (303b) = 0.14 (30) Fraction of total space heat from community boilers (302) x (303b) = 0.14 (30) Fraction of total space heat from community boilers (302) x (303b) = 0.14 (30) Fraction of total space heat from community boilers (302) x (303b) = 0.14 (30) Fraction of total space heat from community boilers (302) x (303b) = 0.14 (30) Fraction of total space heat from community boilers (302) x (303b) = 0.14 (30) Fraction of total space heat from community boilers (302) x (303b) = 0.14 (30) Fraction of total space heat from community boilers (302) x (303b) = 0.14 (30) Fraction of total space heat from community boilers (302) x (303b) = 0.14 (30) Fraction of total space heat from community boilers (302) x (303b) = 0.14 (30) Fraction of total space heat from community boilers (302) x (303b) = 0.14 (30) Fraction of total space heat from community boilers (302) x (303b) = 0.14 (30) Fraction of total space heat from community boilers (302) x (303b) = 0.14 (30) Fraction of total space heat from community boilers (302) x (303b) = 0.14 (30) Fraction of total space heat from community boilers (302) x (303b) = 0.14 (30) Fraction of total space heat from community boilers (302) x (303b) = 0.14 (30) Fraction of total space heat from community boilers (302) x (303b) = 0.14 (30) Fraction of total space heat from community boilers (302) x (303b) = 0.14 (30) Fraction of total space heat from community boilers (302)	125.66	71.94	34.59	5.78	0.47	0.00	0.00	0.00	0.00	6.28	58.13	133.34	
Space heat from CHP									Σ(9	8)15, 10	.12 =	436.18	(98)
Fraction of space heat from secondary/supplementary system (table 11) (30) if none (30) (30) Fraction of space heat from community system (1 - (301) = 1.00 (30) Fraction of community heat from boilers (302) x (303a) = 0.86 (30) Fraction of total space heat from community CHP (302) x (303a) = 0.86 (30) Fraction of total space heat from community boilers (302) x (303b) = 0.14 (30) Fraction of total space heat from community boilers (302) x (303b) = 0.14 (30) Fraction of total space heat from community boilers (302) x (303b) = 0.14 (30) Fraction of total space heat from community boilers (302) x (303b) = 0.14 (30) Fraction of total space heat from community boilers (302) x (303b) = 0.14 (30) Fraction of total space heat from community boilers (302) x (303b) = 0.14 (30) Fraction of total space heat from community boilers (302) x (303b) = 0.14 (30) Fraction of total space heating (302) x (303b) = 0.14 (30) Fraction of total space heating (302) x (303b) = 0.14 (30) Fraction of total space heating (302) x (303b) = 0.14 (30) Fraction of total space heating (302) x (303b) = 0.14 (30) Fraction of total space heating (302) x (303b) = 0.14 (30) Fraction of total space heating (302) x (303b) = 0.14 (30) Fraction of total space heating (302) x (303b) = 0.14 (30) Fraction of total space heating (302) x (303b) = 0.14 (30) Fraction of total space heating (302) x (303b) = 0.86 (30) Fraction of total space heating (302) x (303b) = 0.86 (30) Fraction of total space heating (302) x (303b) = 0.86 (30) Fraction of total space heating (302) x (303b) = 0.86 (30) Fraction of total space heating (302) x (303b) = 0.14 (30) Fraction of total space heating (302) x (303b) = 0.86 (30) Fraction of total space heating (302) x (303b) = 0.86 (30) Fraction of total space heating (302) x (303b) = 0.86 (30) Fraction of total space heating (302) x (303b) = 0.86 (30) Fraction of total space heating (302) x (303b) = 0.86 (30) Fraction of total space heating (302) x (303b) = 0.14 (30) Fraction of total space heating (302)	Space heating requiremen	t kWh/m²/ye	ear							(98)	÷ (4)	6.61	(99)
Fraction of space heat from community system 1 - (301) = 1.00 (30) Fraction of community heat from boilers Fraction of community heat from CHP Fraction of total space heat from community CHP Fraction of total space heat from community boilers Fraction of total space heating 1.00 (30) Fraction of total space heat from CHP (302) x (303b) = 0.14 (30) 1.00 (30) Fraction of total space heating 1.00 (30) Fraction of total space heating 1.00 (30) 1.00 (30) 1.15 (30) Fraction of total space heating 1.00 (30) 1.00 (30) 1.15 (30) Fraction of total space heating 1.00 (30) 1.15 (30) Fraction of total space heating 1.00 (30) 1.15 (30) Fraction of total space heating 1.00 (30) 1.00 (30) 1.15 (30) Fraction of total space heating 1.00 (30) 1.15 (30) Fraction of total space heating 1.00 (30) 1.00 (30) 1.15 (30) 1.15 (30) Fraction of total space heating 1.00 (30) 1.15 (3	9b. Energy requirements	- communit	y heating s	cheme									
Fraction of community heat from boilers Fraction of community heat from CHP Fraction of total space heat from community CHP Fraction of total space heat from community boilers Fraction of total space heating 1.00 30 30 30 30 30 30 30 30 30	raction of space heat from	m secondary,	/suppleme	ntary syste	m (table 1	1)				'0' if ı	none	0.00	(301
raction of community heat from CHP raction of total space heat from community CHP raction of total space heat from community boilers actor for control and charging method (Table 4c(3)) for community space heating raction of total space heat from community boilers actor for charging method (Table 4c(3)) for community space heating raction of total space heat from community boilers actor for charging method (Table 4c(3)) for community water heating raction of total space heating 1.00 (30 1.00 (30 1.15	raction of space heat from	n communit	y system							1 - (30	01) =	1.00	(302
rraction of total space heat from community CHP (302) \times (303a) = 0.86 (300) \times (303b) = 0.14 (300) \times (300) \times (303b) = 0.14 (300) \times (300)	raction of community he	at from boile	rs									0.14	(303
Fraction of total space heat from community boilers $(302) \times (303b) = 0.14$ $(300) \times (300) \times $	raction of community he	at from CHP										0.86	(303
Factor for control and charging method (Table 4c(3)) for community space heating Factor for charging method (Table 4c(3)) for community water heating Figure heating Figure heating Figure heat from CHP Figure heating Figure heating Figure heating Figure heat from boilers Figure heating Figu	raction of total space hea	at from comn	nunity CHP							(302) x (303	3a) =	0.86	(304
Factor for charging method (Table 4c(3)) for community water heating 1.00 (30 distribution loss factor (Table 12c) for community heating system 1.15 (30 space heating 1.00 (30 distribution loss factor (Table 12c) for community heating system 1.15 (30 distribution loss factor (Table 12c) for community heating system 1.15 (30 distribution loss factor (Table 12c) for community heating system 1.15 (30 distribution loss factor (Table 12c) for community water heating 1.00 (30 distribution loss factor (Table 12c) for community water heating 1.15 (30 distribution loss factor (Table 12c) for community water heating 1.15 (30 distribution loss factor (Table 12c) for community water heating 1.15 (30 distribution loss factor (Table 12c) for community water heating 1.15 (30 distribution loss factor (Table 12c) for community water heating 1.15 (30 distribution loss factor (Table 12c) for community water heating 1.15 (30 distribution loss factor (Table 12c) for community water heating 1.15 (30 distribution loss factor (Table 12c) for community heating system 1.15 (30 distribution loss factor (Table 12c) for community heating system 1.15 (30 distribution loss factor (Table 12c) for community heating system 1.15 (30 distribution loss factor (Table 12c) for community heating system 1.15 (30 distribution loss factor (Table 12c) for community heating system 1.15 (30 distribution loss factor (Table 12c) for community heating system 1.15 (30 distribution loss factor (Table 12c) for community heating system 1.15 (30 distribution loss factor (Table 12c) for community heating system 1.15 (30 distribution loss factor (Table 12c) for community heating system 1.15 (30 distribution loss factor (Table 12c) for community heating system 1.15 (30 distribution loss factor (Table 12c) for community heating system 1.15 (30 distribution loss factor (Table 12c) for community heating system 1.15 (30 distribution loss factor (Table 12c) for community heating system 1.15 (30 distribution loss facto	raction of total space hea	at from comn	nunity boile	ers						(302) x (303	3b) =	0.14	(304
Distribution loss factor (Table 12c) for community heating system 1.15 (30 Space heating Annual space heating requirement Space heat from CHP (98) x (304a) x (305) x (306) = 431.39 (30 Space heat from boilers (98) x (304b) x (305) x (306) = 70.23 (30 Water heating Annual water heating requirement (64) x (303a) x (305a) x (306) = 1595.88 (31	actor for control and cha	rging method	d (Table 4c((3)) for com	nmunity sp	ace heating						1.00	(305
Space heating Annual space heating requirement Annual space heat from CHP Space heat from boilers (98) x (304a) x (305) x (306) = 431.39 (306) = 431.39 (306) = 70.23 (actor for charging metho	d (Table 4c(3	3)) for comr	nunity wat	er heating							1.00	(305
Annual space heating requirement Annual space heat from CHP Space heat from boilers (98) x (304a) x (305) x (306) = 431.39 (30 (98) x (304b) x (305) x (306) = 70.23 (30 Water heating Annual water heating requirement Water heat from CHP (64) x (303a) x (305a) x (306) = 1595.88 (31	Distribution loss factor (Ta	ble 12c) for (community	heating sy	rstem							1.15	(306
Annual space heating requirement Annual space heat from CHP Space heat from boilers (98) x (304a) x (305) x (306) = 431.39 (30 (98) x (304b) x (305) x (306) = 70.23 (30 Water heating Annual water heating requirement Mater heat from CHP (64) x (303a) x (305a) x (306) = 1595.88 (31													
Space heat from CHP $(98) \times (304a) \times (305) \times (306) = 431.39$ $(300) \times (304a) \times (305) \times (306) = 70.23$ $(300) \times (304a) \times (305) \times (306) = 70.23$ $(300) \times (304a) \times (305) \times (306) = 70.23$ $(300) \times (304a) \times (305) \times (306) = 70.23$ $(300) \times (304a) \times (305) \times (306) = 70.23$ $(300) \times (304a) \times (305) \times (306) = 70.23$ $(300) \times (304a) \times (305) \times (306) = 70.23$ $(300) \times (305) \times (306) = 70$										٦			
Space heat from boilers (98) x (304b) x (305) x (306) = 70.23 (30 Water heating (64) x (303a) x (305a) x (306) = 1595.88 (31		ıırement								<u> </u>			(98)
Water heating Annual water heating requirement 1613.63 (64) Water heat from CHP (64) x (303a) x (305a) x (306) = 1595.88 (31													_
Annual water heating requirement (64) x (303a) x (305a) x (306) = 1595.88 (31)	space heat from boilers							(9	8) x (304b)	x (305) x (30	06) = [70.23	<u> </u> (307
Vater heat from CHP $(64) \times (303a) \times (305a) \times (306) = \boxed{1595.88}$ (31	Vater heating												
Water heat from CHP $(64) \times (303a) \times (305a) \times (306) = 1595.88$ (31)	Annual water heating requ	uirement						:	1613.63				(64)
	Water heat from CHP							(64) x (303a) x	_ : (305a) x (30	06) =	1595.88	(310
	Water heat from boilers												(310
Electricity used for heat distribution $0.01 \times [(307a)(307e) + (310a)(310e)] = 23.57$ (31	Electricity used for heat di	stribution					0.0						_
													_

mechanical ventilation fans - balanced, extract or positive input from outside

289.87 (330a)

Total electricity for the above, kWh/year

289.87 (331)304.58 (332)

Electricity for lighting (Appendix L)

Energy saving/generation technologies

electricity generated by PV (Appendix M)

-202.29 (333)

Total delivered energy for all uses

2749.45 (307) + (309) + (310) + (312) + (315) + (331) + (332)...(337b) =(338)

10b. Fuel cost	s - community	y heating scheme
----------------	---------------	------------------

	Fuel kWh/year		Fuel price		Fuel cost £/year	
Space heating from CHP	431.39	х	2.97	x 0.01 =	12.81	(340a)
Space heating from boilers	70.23	x	4.24	x 0.01 =	2.98	(340b)
Water heating from CHP	1595.88	x	2.97	x 0.01 =	47.40	(342a)
Water heating from boilers	259.79	x	4.24	x 0.01 =	11.02	(342b)
Pumps and fans	289.87	x	13.19	x 0.01 =	38.23	(349)
Electricity for lighting	304.58	x	13.19	x 0.01 =	40.17	(350)
Additional standing charges					120.00	(351)
Energy saving/generation technologies						
pv savings	-202.29	x	13.19	x 0.01 =	-26.68	(352)
Total energy cost			(340a)(342e) +	(345)(354) =	245.93	(355)

11b. SAP rating - community heating scheme

Energy cost deflator (Table 12)		
_		

(357) 0.93

(356)

Energy cost factor (ECF)

87.02

SAP rating (section 13)

87 (358)

0.42

SAP band

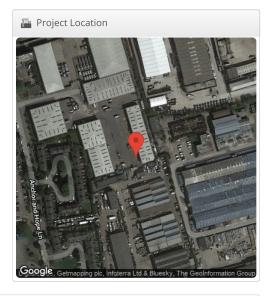
SAP value

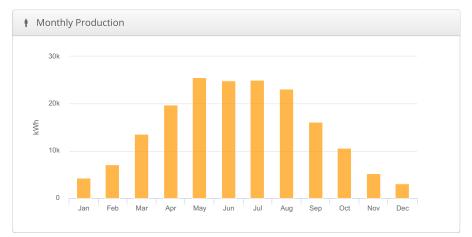
В

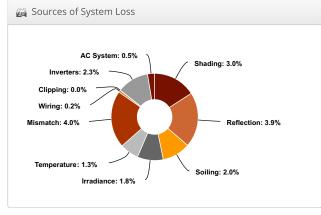
12b. CO₂ emissions - commu	12b. CO₂ emissions - community heating scheme								
		Energy kWh/year		Emission factor		Emissions (kg/year)			
Emissions from community CH	IP (space and water heating)								
Power efficiency of CHP unit		35.70					(361)		
Heat efficiency of CHP unit		41.77					(362)		
Space heating from CHP	(307a) × 100 ÷ (362) =	1032.7758	х	0.2160	=	223.0796	(363)		
less credit emissions for ele	ectricity	-368.7057	х	0.5190	=	-191.3583	(364)		
Water heated by CHP		3820.6801	х	0.2160	=	825.2669	(365)		
less credit emissions for ele	ectricity	-1364.0004	х	0.5190	=	-707.9162	(366)		
Emissions from other sources	(space heating)								
Efficiency of boilers		86.00					(367b)		
CO2 emissions from boilers	[(307b)+(310b)] x 100 ÷ (367b) =	383.74	х	0.216	=	82.89	(368)		
Electrical energy for communi	ty heat distribution	23.57	х	0.519	=	12.23	(372)		
Total CO2 associated with con	nmunity systems					244.20	(373)		
Total CO2 associated with spa	ce and water heating					244.20	(376)		
Pumps and fans		289.87	x	0.519	=	150.44	(378)		
Electricity for lighting		304.58	x	0.519	=	158.08	(379)		
Energy saving/generation tech	nnologies								

pv savings	-202.29	x 0.51	9 =	-104.99	(380)
Total CO ₂ , kg/year			(376)(382) =	447.73	(383)
Dwelling CO₂ emission rate			(383) ÷ (4) =	6.78	(384)
El value				94.59]
El rating (section 14)				95	(385)
El band				Α]

42h Britannian ann an t-Arabin an h-					
13b. Primary energy - community heating scheme	Energy kWh/year		Primary factor		Primary energy (kWh/year)
Primary Energy from community CHP (space and water heating)					
Power efficiency of CHP unit	35.70				(361)
Heat efficiency of CHP unit	41.77				(362)
Space heating from CHP $(307a) \times 100 \div (362) =$	= 1032.78	x	1.22	=	1259.99 (363)
less credit energy for electricity	-368.71	x	3.07	=	-1131.93 (364)
Water heated by CHP	3820.68	x	1.22	=	4661.23 (365)
less credit energy for electricity	-1364.00	x	3.07	=	-4187.48 (366)
Primary energy from other sources (space heating)					
Efficiency of boilers	86.00				(367b)
Primary energy from boilers [(307b)+(310b)] x 100 ÷ (367b) =	383.74	x	1.22	=	468.17 (368)
Electrical energy for community heat distribution	23.57	x	3.07	=	72.37 (372)
Total primary energy associated with community systems					1142.35 (373)
Total primary energy associated with space and water heating					1142.35 (376)
Pumps and fans	289.87	х	3.07	=	889.91 (378)
Electricity for lighting	304.58	x	3.07	=	935.07 (379)
Energy saving/generation technologies					
Electricity generated - PVs	-202.29	x	3.07	=	-621.03 (380)
Primary energy kWh/year					2346.29 (383)
Dwelling primary energy rate kWh/m2/year					35.55 (384)


APPENDIX 5 - HELIOSCOPE SUMMARY




Charlton site V3 Charlton site, 51.491889, 0.031527

窗 Report					
Project Name	Charlton site				
Project Address	51.491889, 0.031527				
Prepared By	Peter Ritter peter.ritter@ramboll.com				

System Metrics					
Design	Charlton site V3				
Module DC Nameplate	205.8 kW				
Inverter AC Nameplate	195.0 kW Load Ratio: 1.06				
Annual Production	178.5 MWh				
Performance Ratio	82.3%				
kWh/kWp	867.3				
Weather Dataset	TMY, 10km Grid, meteonorm (meteonorm)				
Simulator Version	33b33aee60-8741125e19-5c067e27e5- 350f6f2a5c				

	Description	Output	% Delta				
	Annual Global Horizontal Irradiance	975.5					
	POA Irradiance	1,054.2	8.1%				
Irradiance	Shaded Irradiance	1,022.2	-3.0%				
(kWh/m ²)	Irradiance after Reflection	982.4	-3.9%				
	Irradiance after Soiling	962.7	-2.0%				
	Total Collector Irradiance	962.8	0.0%				
Nameplate 197,825.8							
	Output at Irradiance Levels	194,182.3	-1.8%				
	Output at Cell Temperature Derate	191,593.5	-1.3%				
Energy	Output After Mismatch	183,838.3	-4.0%				
(kWh)	Optimal DC Output	183,561.5	-0.2%				
	Constrained DC Output	183,539.9	0.0%				
	Inverter Output	179,396.0	-2.3%				
	Energy to Grid	178,499.0	-0.5%				
Temperature M	etrics						
	Avg. Operating Ambient Temp		14.1 °C				
Avg. Operating Cell Temp							
Simulation Met	rics						
		Operating Hours	4545				
		Solved Hours	4545				

🖧 Condition Set												
Description	Con	Condition Set 1										
Weather Dataset	TMY	, 10kı	m Grid	, me	eteon	orm (n	neteor	norm)				
Solar Angle Location	Met	eo La	t/Lng									
Transposition Model	Pere	z Mo	del									
Temperature Model	Sand	dia M	odel									
	Rac	k Тур	e	á	9	b		Te	mper	ature	Delta	
Temperature Model Parameters	Fixe	d Tilt		-	3.56	-0.0	075	39	,C			
	Flus	h Mo	unt		2.81	-0.0	0455	09	,C			
Soiling (%)	J	F	М	Α	M	J	J	Α	S	0	N	D
	2	2	2	2	2	2	2	2	2	2	2	2
Irradiation Variance	5%											
Cell Temperature Spread	4° C											
Module Binning Range	-2.5	% to 2	2.5%									
AC System Derate	0.50	%										
Module Characterizations	Mod	dule				Char	acteriz	ation				
Module Characterizations	1 ST	H-24	5 (1 Sc	ltec	h)	Spec	Sheet	Char	acter	izatio	n, PAN	1
	Device						Characterization					
	Sun	ny Tr	ipowe	r 170	000TL	(SMA)		Default Characterization				
Component Characterizations	Sunny Tripower 20000TL-US (SMA)				Modified CEC							
	Sun	ny Tr	ipowe	r 120	DOOTL	(SMA)		Spe	She	et		
	Sun	ny Tr	ipowe	r 250	OOOTL	-30 (SI	VIA)	Defa	ault C	harac	terizat	tion
	Sun	ny Tr	ipowe	r Co	re1 Cl	EC (SM	A)	Defa	ault C	harac	terizat	tion

▲ Components					
Component	Name	Count			
Inverters	Sunny Tripower 17000TL (SMA)	4 (68.0 kW)			
Inverters	Sunny Tripower 20000TL-US (SMA)	2 (40.0 kW)			
Inverters	Sunny Tripower 12000TL (SMA)	1 (12.0 kW)			
Inverters	Sunny Tripower 25000TL-30 (SMA)	1 (25.0 kW)			
Inverters	Sunny Tripower Core1 CEC (SMA)	1 (50.0 kW)			
Strings	10 AWG (Copper)	39 (1,286.3 m)			
Module	1 Soltech, 1 STH-245 (245W)	840 (205.8 kW)			

Combiner Poles	String Size	Stringing Strategy
12	6-24	Along Racking
12	13-24	Along Racking
12	13-24	Along Racking
12	13-24	Along Racking
12	6-24	Along Racking
12	6-24	Along Racking
12	15-24	Along Racking
12	14-24	Along Racking
	12 12 12 12 12 12 12	12 6-24 12 13-24 12 13-24 12 13-24 12 6-24 12 6-24 12 15-24

Field Segments									
Description	Racking	Orientation	Tilt	Azimuth	Intrarow Spacing	Frame Size	Frames	Modules	Power
B-1	Fixed Tilt	Portrait (Vertical)	10°	165°	1.0 m	1x5	18	88	21.6 kW
B-2	Fixed Tilt	Portrait (Vertical)	10°	166°	1.0 m	1x5	14	70	17.2 kW
B-3	Fixed Tilt	Portrait (Vertical)	10°	163°	1.0 m	1x4	20	80	19.6 kW
B- 4	Fixed Tilt	Portrait (Vertical)	10°	166°	1.0 m	1x3	48	142	34.8 kW
B-5	Fixed Tilt	Portrait (Vertical)	10°	166°	1.0 m	1x5	19	95	23.3 kW
B-6	Fixed Tilt	Portrait (Vertical)	10°	167°	1.0 m	1x5	44	220	53.9 kW
B-7	Fixed Tilt	Portrait (Vertical)	10°	166°	1.0 m	1x4	12	48	11.8 kW
B-8	Fixed Tilt	Portrait (Vertical)	10°	166°	1.0 m	1x4	25	97	23.8 kW