

JANUARY 2023

# **Energy Statement**

Energy Statement – January 2023 – GLA0711 AMND Rev 01 January 2023



**Energy Statement** 

049340

6 January 2023

Revision P04



| Revision | Description        | Issued by | Date     | Checked |
|----------|--------------------|-----------|----------|---------|
| P01      | Draft for comments | LP        | 04/11/22 | WE      |
| P02      | Draft for comments | LP        | 16/11/22 | WE      |
| P03      | Issue for Planning | LP        | 18/11/22 | WE      |
| P04      | Issue for Planning | LP        | 06/01/23 | WE      |

https://burohappold.sharepoint.com/sites/049340/Shared Documents/Sustainability/Reports/Energy and Sustainability Statement/220106 PGPS Energy Statement Stage 2 Report\_P04.docx

#### **Report Disclaimer**

...

This Report was prepared by Buro Happold Limited ("BH") for the sole benefit, use and information of Berkeley Homes (Central London) for Planning. BH assumes no liability or responsibility for any reliance placed on this Report by any third party for any actions taken by any third party in reliance of the information contained herein. BH's responsibility regarding the contents of the Report shall be limited to the purpose for which the Report was produced and shall be subject to the express contract terms with Berkeley Homes (Central London). The Report shall not be construed as investment or financial advice. The findings of this Report are based on the available information as set out in this Report.

| author    | Laura Plazas |
|-----------|--------------|
| date      | 06/01/23     |
| approved  | Wayne Early  |
| signature | Wayne Early  |
| date      | 06/01/23     |

## Contents

|   | l Execu  | Executive Summary                              |  |  |
|---|----------|------------------------------------------------|--|--|
|   | 1.1      | 'Be Seen'                                      |  |  |
| 2 | 2 Introd | luction                                        |  |  |
|   | 2.1      | Development Description                        |  |  |
|   | 2.2      | Area schedule                                  |  |  |
| 3 | 8 Policy | ,                                              |  |  |
|   | 3.1      | Overview                                       |  |  |
|   | 3.2      | National Energy Policy and Guidance            |  |  |
|   | 3.2.1    | The United Nations Paris Climate Agreement     |  |  |
|   | 3.2.2    | The National Planning Policy Framework, NPPF   |  |  |
|   | 3.2.3    | Climate Change Act                             |  |  |
|   | 3.2.4    | UK decarbonisation context                     |  |  |
|   | 3.2.4.1  | Electricity grid decarbonisation               |  |  |
|   | 3.2.5    | Policy and Building Regulations Changes        |  |  |
|   | 3.3      | Regional Policy: London Plan                   |  |  |
|   | 3.1.1    | 3.3.1 Resulting Energy and Carbon Approach     |  |  |
|   | 3.4      | Local Policy – Westminster City Plan 2019-2040 |  |  |
|   | 3.5      | Building Regulation Part L                     |  |  |
|   | 3.6      | SAP 10.2 for Part L1 Compliance                |  |  |
|   | 3.7      | LETI Guidance                                  |  |  |
| 4 | 1 Energy | y Strategy                                     |  |  |
|   | 4.1      | Overview                                       |  |  |
|   | 4.2      | Energy Strategy                                |  |  |
|   | 4.2.1    | Fabric First Approach                          |  |  |
|   | 4.2.2    | Energy Efficient HVAC Strategy                 |  |  |
|   | 4.3      | Energy Hierarchy Methodology                   |  |  |

#### 5 Energy Baseline Demand and CO<sub>2</sub> Emissions – 'TER'

- 5.1 Baseline Demand and CO<sub>2</sub> Emissions
- 5.1.1 Non-Domestic Regulated emissions

#### **BURO HAPPOLD**

|    | 5.1.2  | Domestic Regulated emissions                       | 18 |    | 10.5    | Domestic Thermal Modelling Overheating Results |
|----|--------|----------------------------------------------------|----|----|---------|------------------------------------------------|
|    | 5.1.3  | Unregulated emissions                              | 18 |    | 10.5.1  | Modelling Scenarios                            |
|    | 5.1.4  | Baseline' predicted energy demand                  | 18 |    | 10.5.2  | Domestic Results                               |
|    | 5.1.5  | Baseline' carbon emissions                         | 18 |    | 10.5.3  | Domestic Overheating Compliance Summary        |
| 6  | Energy | Demand Reduction - 'Lean'                          | 19 |    | 10.6    | Non-domestic active cooling                    |
|    | 6.1    | Passive Design                                     | 19 | 11 | 'Be See | en'                                            |
|    | 6.2    | Lean fabric and system improvements                | 19 |    | 11.1    | GLA Be Seen Background and Requirements        |
|    | 6.3    | Non-domestic building services                     | 20 |    | 11.2.1  | Domestic Legislation and Guidance              |
|    | 6.4    | Domestic building services                         | 20 |    | 11.2.2  | Non-Domestic Legislation and Guidance          |
|    | 6.4.1  | Heating, Cooling and Ventilation                   | 20 |    | 11.3    | Proposed Metering Strategy                     |
|    | 6.5    | 'Lean' predicted energy demand                     | 21 |    | 11.4    | 'Be Seen'                                      |
|    | 6.6    | 'Lean' Carbon Emissions                            | 21 |    | 11.5    | 'Be Seen' Results                              |
|    | 6.7    | Dwelling Fabric Energy Efficiency (DFEE)           | 21 | 12 | Conclu  | isions                                         |
| 7  | Energy | Heating Infrastructure including CHP - 'Clean'     | 22 |    | 12.1    | Overheating                                    |
|    | 7.1    | Addressing the London Plan heating hierarchy       | 22 |    | 12.2    | 'Be Seen'                                      |
|    | 7.2    | Connection to existing heating or cooling networks | 22 | 11 | Appen   | dix A – BRUKL Reports                          |
|    | 7.3    | Heating strategy                                   | 23 | 12 | Appen   | dix B – SAP Reports                            |
| 8  | Energy | Renewable Energy - 'Green'                         | 24 |    |         |                                                |
|    | 8.1    | Low Zero Carbon Technologies                       | 24 |    |         |                                                |
|    | 8.2    | Solar Photovoltaic Panels (PVs)                    | 25 |    |         |                                                |
|    | 8.3    | 'Green' predicted energy demand                    | 25 |    |         |                                                |
|    | 8.4    | 'Green' Carbon Emissions                           | 25 |    |         |                                                |
| 9  | Energy | Hierarchy Conclusions                              | 26 |    |         |                                                |
| 10 | Overhe | ating                                              | 27 |    |         |                                                |
|    | 10.1   | Overview                                           | 27 |    |         |                                                |
|    | 10.2   | Acoustic Levels                                    | 27 |    |         |                                                |
|    | 10.3   | Domestic Overheating Methodology                   | 27 |    |         |                                                |
|    | 10.3.1 | Part O 2021                                        | 27 |    |         |                                                |
|    | 10.3.2 | CIBSE TM59                                         | 27 |    |         |                                                |
|    | 10.3.3 | CIBSE A                                            | 28 |    |         |                                                |
|    | 10.4   | Domestic Thermal Modelling Assumptions             | 28 |    |         |                                                |
|    |        |                                                    |    |    |         |                                                |

#### **BURO HAPPOLD**

#### Table of Tables

| Table 1—1 Predicted Site wide carbon dioxide emissions and savings after each stage of the Energy I<br>(Part L 2021)   | Hierarchy<br>87    |
|------------------------------------------------------------------------------------------------------------------------|--------------------|
| Table 1—2 Estimated Energy Demand and Carbon Emissions (Residential)                                                   | 98                 |
| Table 1—3 Estimated Energy Demand and Carbon Emissions (Commercial)                                                    | 98                 |
| Table 2—1 Area Schedule                                                                                                | 109                |
| Table 3-1 Energy targets                                                                                               | 1312               |
| Table 3-2 LETI Design Guide Recommended Standards                                                                      | 1413               |
| Table 4-1 Summary of modelling assumptions through the energy hierarchy                                                | 1615               |
| Table 5-1 Dwellings assessed                                                                                           | 1817               |
| Table 5—2 Estimated site-wide unregulated carbon emissions                                                             | 1817               |
| Table 5-3 'Baseline' predicted energy demands                                                                          | 1817               |
| Table 5-4 'Baseline' predicted carbon emissions (using SAP 10.2)                                                       | 1817               |
| Table 6-1 PGPS Fabric Performance for Non-Domestic areas                                                               | 1918               |
| Table 6-2 PGPS Fabric Performance for Domestic areas                                                                   | 1918               |
| Table 6-3 PGPS Thermal Bridging Performance for Domestic areas                                                         | 1918               |
| Table 6-4 PGPS Domestic building services specifications                                                               | 2019               |
| Table 6-5 PGPS Be Lean Building energy modelling inputs (non-domestic)                                                 | 2019               |
| Table 6-6 Predicted Lean energy demands                                                                                | 2120               |
| Table 6-7 Predicted Lean carbon emissions (using SAP 10.2 carbon factors)                                              | 2120               |
| Table 6-8 PGPS Fabric Energy Efficiency results                                                                        | 2120               |
| Table 8-1 – PGPS LZC feasiblity                                                                                        | 2423               |
| Table 8—2 Estimated PV Generation                                                                                      | 2524               |
| Table 8-3 Predicted Green energy demands                                                                               | 2524               |
| Table 8-4 Predicted Green carbon emissions (using SAP 10.2 carbon factors)                                             | 2524               |
| Table 9-1 Predicted Site Wide regulated CO <sub>2</sub> emissions saving after each stage of the Energy Hierarch 2021) | hy (Part L<br>2625 |
| Table 10—1 Overheating Strategy                                                                                        | 2726               |
| Table 10-2 Thermal comfort modelling inputs                                                                            | 2928               |
| Table 10-3 Dwellings assessed                                                                                          | 2928               |
| Table 10-4 Modelling scenarios                                                                                         | 2928               |

Table 10-5 Thermal Comfort summary results – Natural VentilTable 10-6 Thermal Comfort summary results Scenario 1 – Na

Table 10-7 Thermal Comfort summary results Scenario 2 – Me

Table 10-8 Active cooling demand for non-domestic spaces

Table 11-1 'Be Seen' summary – Non-Domestic

| ilation Only                           | 3029 |
|----------------------------------------|------|
| atural Ventilation Only                | 3029 |
| echanical Cooling and Tempered Cooling | 3029 |
|                                        | 3029 |
|                                        | 3231 |

#### Table of Figures

| Figure 1-1 PGPS Site Wide Carbon Savings throughout the energy hierarchy (Part L 2021)                                           | 8             |
|----------------------------------------------------------------------------------------------------------------------------------|---------------|
| Figure 2-1 Location Plan of PGPS (planning boundary in red)                                                                      | 10            |
| Figure 3-1 - Summary of planning policy framework of the GLA and Local Policy                                                    | 11            |
| Figure 3-2 - UK Past and future UK carbon regulations                                                                            | 11            |
| Figure 3-3 Zero carbon requirements                                                                                              | 12            |
| Figure 3-4 Part L, F and O 2021 Versions                                                                                         | 14            |
| Figure 4-1 GLA Energy Hierarchy                                                                                                  | 15            |
| Figure 4-2 GLA Cooling Hierarchy                                                                                                 | 15            |
| Figure 4-3 PGPS HVAC strategy                                                                                                    | 15            |
| Figure 5-1 PGPS Façade South                                                                                                     | 17            |
| Figure 5-2 Non-Domestic spaces assessed                                                                                          | 17            |
| Figure 6-1 – PGPS passive design first approach                                                                                  | 19            |
| Figure 7-1 Existing Heat Networks in proximity with PGPS (https://maps.london.gov.uk/heatmap)                                    | 22            |
| Figure 7-2 Indicative WEG heat network routing                                                                                   | 22            |
| Figure 7-3 Discarded Energy Strategy for PGPS with WEG connection                                                                | 23            |
| Figure 7-4 Schematic of PGPS clearly identifying facility to back connect into WEG community heat netwo<br>future DHN connection | ork its<br>23 |
| Figure 8-1 PGPS PV panels array                                                                                                  | 25            |
| Figure 9-1 PGPS Carbon Savings throughout the energy hierarchy (Part L 2021)                                                     | 26            |
| Figure 10-1 Part O Methodology routes                                                                                            | 27            |
| Figure 10-2 Visual representation of the TM52 Criterion 1, pass/fail.                                                            | 28            |
| Figure 10-3 Computer model used for overheating analysis in IES-VE 2022                                                          | 28            |
| Figure 10-4 Opening types                                                                                                        | 29            |
| Figure 10-5 CIBSE TM59 Internal gains templates                                                                                  | 29            |
| Figure 11-1 'Be Seen' process and responsibilities.                                                                              | 31            |

## Glossary

| Term                                     | Definition                                                                                                                                                                                                                                                        |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ASHP                                     | Air Source Heat Pump                                                                                                                                                                                                                                              |
| СНР                                      | Combined Heat and Power. This is defined as the simultaneous generation of heat and power in a single process.                                                                                                                                                    |
| DFEE                                     | Dwelling Fabric Energy Efficiency                                                                                                                                                                                                                                 |
| BER                                      | Building Emissions Rate (predicted emissions from the proposed building) for Part L                                                                                                                                                                               |
| BRUKL                                    | Building Regulations UK Part L                                                                                                                                                                                                                                    |
| DHN                                      | District Heat Network                                                                                                                                                                                                                                             |
| DHW                                      | Domestic Hot Water                                                                                                                                                                                                                                                |
| GLA                                      | Greater London Authority                                                                                                                                                                                                                                          |
| LETI                                     | Low Energy Transformation Initiative                                                                                                                                                                                                                              |
| LTHW                                     | Low Temperature Hot Water                                                                                                                                                                                                                                         |
| LZC                                      | Low and Zero Carbon technologies                                                                                                                                                                                                                                  |
| NCM                                      | National Calculation Methodology (for Part L2 Building Regulation Compliance)                                                                                                                                                                                     |
| PGPS                                     | Paddington Green Police Station                                                                                                                                                                                                                                   |
| Regulated CO <sub>2</sub><br>emissions   | The CO <sub>2</sub> emissions arising from energy used by fixed building services, as defined in Approved Document Part L of the Building Regulations. These include fixed systems for lighting, heating, hot water, air conditioning and mechanical ventilation. |
| SAP                                      | Standard Assessment Procedure (for Part L1 Building Regulation Compliance)                                                                                                                                                                                        |
| TER                                      | Target Emissions Rate for Part L                                                                                                                                                                                                                                  |
| TFEE                                     | Target Fabric Energy Efficiency                                                                                                                                                                                                                                   |
| UKGBC                                    | UK Green Building Council                                                                                                                                                                                                                                         |
| Unregulated CO <sub>2</sub><br>Emissions | The CO <sub>2</sub> emissions arising from energy used by non-fixed building services such as those relating to cooking, all electrical appliances and other small power.                                                                                         |
| wcc                                      | Westminster City Council                                                                                                                                                                                                                                          |

#### **Executive Summary** 1

This Energy Strategy report has been compiled by Buro Happold on behalf of the Applicant to support the Full Planning Application (FPA) of Paddington Green Police Station (PGPS) scheme at 4 Harrow Road, London, W2 (the Site). The redevelopment of the strategic site aims to provide high quality retail, and residential uses, with an exemplary public realm around the perimeter of the site.

The proposal has been assessed using the relevant Building Regulation methodology, in order to estimate the carbon dioxide emissions associated with each aspect of the development. The energy modelling has been used to demonstrate the carbon dioxide emissions reduction achieved through application of the energy hierarchy in comparison to a Part L of the Building Regulations 2021 Baseline building.

A low-carbon strategy has been implemented across the development. This includes highly insulated and airtight building fabric, energy efficient MEP systems and the provision of renewable sources such as ASHPs and PVs. The energy and emissions reduction strategy are described in more detail throughout this report and shall be adhered to in order to achieve the current performance.

Through the application of the energy hierarchy, the development achieves on-site sitewide carbon dioxide emissions reduction of 67% below the Building Regulations 2021 TER (ASHP heating system). This is a significant reduction considering the stringent NCM and SAP methodologies (2022) for assessing new schemes under Part L 2021.

The total carbon emissions for the development incorporating the GLA energy hierarchy are given in Table 1–1. A total one-off carbon off-set payment of £470,302 is required to achieve the "Zero Carbon" target.

| Table 1—1 Predicted Site wide carbon  | diovide emissions and savings   | after each stane of the F | nergy Hierarchy (Part I 2021) |
|---------------------------------------|---------------------------------|---------------------------|-------------------------------|
| Tuble 1 11 realeted bite while carbon | aloxiac cillissions and savings | anter caen stage of the s | incry (i are E 2021)          |

| Part L 2021                                      | Total regulated<br>emissions<br>(Tonnes CO <sub>2</sub> /year) | CO <sub>2</sub> savings<br>(Tonnes CO <sub>2</sub> /year)    | Percentage<br>saving<br>(%)            |
|--------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------|
| Part L 2021 Baseline                             | 502.7                                                          | -                                                            | -                                      |
| Be Lean: savings from<br>energy demand reduction | 408.7                                                          | 93.9                                                         | 19%                                    |
| Be Clean: savings from<br>heat network           | 408.7                                                          | 0                                                            | 0%                                     |
| Be Green: savings from renewable energy          | 165.0                                                          | 243.7                                                        | 48%                                    |
| Cumulative on-site savings                       | -                                                              | 337.6                                                        | 67%                                    |
|                                                  |                                                                | CO <sub>2</sub> savings off-set<br>(Tonnes CO <sub>2</sub> ) | CO <sub>2</sub> off-set payment<br>(£) |
| Total site wide off-set                          | -                                                              | 4,950.5                                                      | 470,302                                |



Figure 1-1 PGPS Site Wide Carbon Savings throughout the energy hierarchy (Part L 2021)

#### 1.1 'Be Seen'

Following the 'Be Seen' Energy Monitoring Guidance (October 2020), and as per GLA monitoring requirement stated in Policy SI2 of the London Plan, the Applicant will demonstrate a commitment to monitor, verify and report on the energy performance post-construction of the PGPS scheme.

The methodology used for reporting the energy consumption (kWh/yr) and carbon emissions (tonnes CO<sub>2</sub>/yr) estimates follows the CIBSE TM54 recommendations on regulated and unregulated loads. Advanced dynamic thermal modelling simulations were carried out to estimate the space heating, cooling, ventilation and fan power demand, alongside overall best practice benchmarks based on CIBSE Guide F to estimate the additional energy use for the scheme (e.g., IT loads, lighting and lifts). For residential areas, SAP calculations were considered for the purpose of Be Seen compliance. As the technical design progresses, the energy prediction for the scheme will be estimated based on further dynamic simulation model and energy metering aspirations.

The energy consumption and carbon emissions estimations for the development, based on both regulated and unregulated energy, are described in Table 1-2 and Table 1-3.



Table 1—2 Estimated Energy Demand and Carbon Emissions (Residential)

| Performance Indicator<br>Group | Indicator                            | Unit                   | Part L1/SAP |
|--------------------------------|--------------------------------------|------------------------|-------------|
| Building Energy Use            | Grid electricity                     | kWh/year               | 1,386,207   |
|                                | Energy generation                    | kWh/year               | 61,057      |
| Carbon Emissions               | Predicted annual carbon<br>emissions | tCO <sub>2</sub> /year | 153.36      |

Table 1—3 Estimated Energy Demand and Carbon Emissions (Commercial)

| Performance Indicator<br>Group | Indicator                            | Unit                   | Part L2<br>Calculations | CIBSE TM54/F<br>Calculations |
|--------------------------------|--------------------------------------|------------------------|-------------------------|------------------------------|
|                                | Grid electricity                     | kWh/year               | 86,700                  | 906,000                      |
| Building Energy Use            | Energy generation                    | kWh/year               | -                       | -                            |
| Carbon Emissions               | Predicted annual<br>carbon emissions | tCO <sub>2</sub> /year | 9.2                     | 122                          |

## 2 Introduction

This Energy Statement had been prepared by Buro Happold on behalf of Berkeley Homes ('the Applicant') in support of a full planning application for PGPS ('the Site') within the Westminster City Council ('WCC'). The redevelopment of the strategic site aims to provide exemplary new high-quality retail, restaurants, and residential uses, with a significant public realm around the perimeter of the site.

#### 2.1 Development Description

The description of the proposed development is as follows:

"Demolition of the existing building and redevelopment of the site to provide three buildings of 39, 24 and 17 storeys in height, providing residential units (including affordable units)(Class C3), commercial uses (Class E), a community use (Class F.2), landscaping, tree and other planting, public realm improvements throughout the site including new pedestrian and cycle links, provision of public art and play space, basement level excavation to provide associated plant, servicing, disabled car parking and cycle parking and connection through to the basement of the neighbouring West End Gate development."



Figure 2-1 Location Plan of PGPS (planning boundary in red)

#### 2.2 Area schedule

For the purposes of the Energy Strategy, all typologies included within the application have been modelled using detailed energy modelling software. The non-domestic has been modelled using the VE Compliance module of the Dynamic

Simulation Modelling software IES Virtual Environment 2022, and the domestic areas have been assessed using approved software FSAP (Stroma) following SAP 10.2 methodology.

Table 2-1 outlines the area schedule used to produce both estimated energy demand figures and carbon emissions.

#### Table 2—1 Area Schedule

| Туроlоду                       | NIA (m²) | GIA (m²) | GIA (ft <sup>2</sup> ) |
|--------------------------------|----------|----------|------------------------|
| Residential                    | 43,024   | 59,068   | 635,799                |
| Commercial/Community Space     | 1,122    | 1,212    | 13,045                 |
| Other - Circulation & Basement | -        | 5,494    | 59,137                 |
| Total                          | 44,146   | 65,774   | 707,981                |

The purpose of this Energy Statement is to describe the energy objectives and deliverables for the design, construction and operation of the project, including the legislative requirements for the site.

## **3** Policy

#### 3.1 Overview

This policy section outlines some of the key national, strategic and local policy frameworks relating to energy and carbon.

Strategic planning in London is a shared responsibility of the Mayor of London, London Boroughs and the City of London Corporation. The London Plan is the spatial development strategy for London, produced by the Greater London Authority (GLA) on behalf of the Mayor of London. Every London City Council Local Plan must be in general conformity with the London Plan. The Site is located in the City of Westminster and as such any development proposal will be determined against the Westminster City Plan 2019-2040 (April 2021) and the London Plan, and other relevant material considerations, such as Westminster Environmental Supplementary Planning Document (ESPD, 2022).



Figure 3-1 - Summary of planning policy framework of the GLA and Local Policy

#### 3.2 National Energy Policy and Guidance

#### 3.2.1 The United Nations Paris Climate Agreement

The Paris Agreement is a major international climate action agreement to which the UK is signatory. The 196 countries under the agreement have committed to limit global warming to 2°C over pre-industrial levels and aim to safely adapt to any consequences of climate change. The UK ratified this in 2016.

While countries may set their own policies and targets (NDCs), these are assessed as to their level of ambition and to their progressive approach and must be tracked and published. The UK currently falls under NDCs produced collectively with the European Union. These commit to at least a 40% domestic reduction in GHG emissions by 2030 compared to 1990 (CAIT), including energy consumption and industrial processes. Though this calculation may change in light of Brexit, the UK will remain signatory to the Paris Agreement, with its NDC revised.

#### 3.2.2 The National Planning Policy Framework, NPPF

The NPPF consolidates previously issued documents called Planning Policy Statements (PPS) and Planning Policy Guidance Notes (PPG). The NPPF sets out an expectation that local plans will include a positive strategy for use and supply of renewable and low carbon energy sources.

Within the NPPF's planning guidance relating to energy is set out in section 14 – "meeting the challenge of climate change, flooding and coastal change".

#### 3.2.3 Climate Change Act

The Climate Change Act 2008 established a legally binding target to reduce the UK's greenhouse gas emissions by at least 80% below 1990 levels by 2050. To drive progress and set the UK on a pathway towards this target, the Act introduced a system of carbon budgets which provide legally binding limits on the emissions that may be produced in successive five-year periods, beginning in 2008.

The first three carbon budgets were set in law in May 2009 and require emissions to be reduced by at least 34% below base year levels in 2020. The fourth carbon budget, covering the period 2023–27, was set in law in June 2011 and requires emissions to be reduced by 50% below 1990 levels. The fifth carbon came into force in July 2016, limiting the budget for 2028–2032 of is 1,725 mega tonnes of carbon dioxide equivalent. This correlates to the reduction of 57% in greenhouse gas emissions compared to 1990 levels.

#### 3.2.4 UK decarbonisation context

The UK became the first major economy in the world to pass laws to end its contribution to global warming by 2050. The target will require the UK to bring all greenhouse gas emissions to net zero by 2050, compared with the previous target of at least 80% reduction from 1990 levels.

#### 3.2.4.1 Electricity grid decarbonisation

The carbon intensity of electricity in the UK has been reducing from 0.519 kg  $CO_2$ / kWh to 0.136 kg  $CO_2$ / kWh as per SAP methodologies 2012 and SAP 10.2. This is due to the closure of coal fired power stations and the increase in renewable energy. As a result, electricity is becoming a more feasible lower carbon fuel source compared to traditional gas combustion. This is also resulting in Gas fired CHP engines not providing the long-term carbon savings shown previously and going forward will be a high carbon technology based on Part L. These changes result in a difference in Part L carbon reductions shown by recent developments and for new ones coming forward now.

London Plan Policy is looking to push towards the future of low carbon heating, with the application of heat pumps, and therefore the GLA ask for the SAP 10.2 carbon factors to be used as these provide the most accurate representation of the latest carbon intensity of the grid.

#### 3.2.5 Policy and Building Regulations Changes



Figure 3-2 - UK Past and future UK carbon regulations

#### **BURO HAPPOLD**

Revision P04 6 January 2023 Page 11

Figure 3-2 shows the changing policy and regulatory landscape since 2014. It was outlined by BEIS that district heat networks (DHN), heat pumps and electric heating, along with improved fabric will meet these future emissions reductions targets. The consultation report stated:

"2.9 The CCC stated in its report Net Zero: The UK's contribution to stopping global warming that achieving the net zero target will require the full decarbonisation of buildings by 2050. There are a number of existing low carbon heating technologies with the potential to support the scale of change needed. We anticipate that low carbon heating may be delivered through heat pumps, heat networks and in some circumstance's direct electric heating."

With the release of Part L 2013 and shortly after the London Plan 2016, many developments were locked into long term, high carbon solution with CHP, with priorities set to District Heat Networks connections.

As developments in design now come forward, they would be expected to be registered under a future set of regulations, i.e., in the early to mid-2020s. As a result, changes will be required to the baseline energy strategy to ensure future proofing.

The Building Regulations Part L governs the conservation of fuel and power in both new construction and refurbishment of England building stock. Compliance with Building Regulations is a regulatory requirement for all new developments. Carbon emissions of a development comparative to compliance with Part L is the key performance indicator for many carbon targets, including those set out in the London Plan.

The current version of the Approved Document Part L1 for domestic buildings and Part L2 for non-domestic buildings were published in December 2021, taking effect buy the 15 June 2022 and are referred to as Part L 2021. The Part L procedure uses SBEM or other software tool approved under the Notice of Approval, to assess the energy performance of buildings.

#### 3.3 Regional Policy: London Plan

The Mayor of London formally adopted the London Plan on March 4<sup>th</sup> 2021. This new London Plan forms part of the development plan, against which development proposals in London are assessed against.

Policies surrounding energy and carbon are summarised as follows.

#### Policy SI2 Minimising greenhouse gas emissions

Major development should be net zero carbon. This means reducing greenhouse gas emissions in operation, and minimising both annual and peak energy demand in accordance with the following energy hierarchy:

- 1) be lean: use less energy and manage demand during construction and operation.
- 2) be clean: exploit local energy resources (such as secondary heat) and supply energy efficiently and cleanly.
- 3) be green: maximise opportunities for renewable energy by producing, storing and using renewable energy on-site.
- 4) be seen: monitor, verify and report on energy performance.

A minimum on-site reduction of at least 35% from Building Regulations is required for major developments. Schemes should also achieve 10% for residential elements and 15% for non-domestic elements through energy efficiency ("Lean") measures alone.

The GLA requires the zero-carbon target to be achieved with a minimum 35% savings on-site, beyond the notional Part L 2021 baseline. The remaining carbon emissions (typically 65%) are offset through a cash in lieu payment to Westminster City Council in this instance. The money is used to fund carbon reduction projects in WCC boundary. This payment must account for 30 years of carbon emissions at a fixed rate of cost and carbon intensity.

#### **Policy SI3 Energy infrastructure**

Major development proposals within Heat Network Priority Areas should have a communal low temperature heating system

1) the heat source for the **communal heating system should be selected in accordance** with the following heating hierarchy:

- a. connect to local existing or planned heat networks
- an area-wide heat network)
- d. use ultra-low NOx gas boilers
- meet the requirements of policy SI1 (A)
- 6) a later date.

#### Policy SI4 Managing heat risk

Development proposals should minimise adverse impacts on the urban heat island through design, layout, orientation, materials and the incorporation of green infrastructure. Major development proposals should demonstrate through an energy strategy how they will reduce the potential for internal overheating and reliance on air conditioning systems in accordance with the cooling hierarchy.

#### 3.1.1 3.3.1 Resulting Energy and Carbon Approach

Zero carbon implies that the target for new developments is to reduce carbon dioxide emissions down to zero. This requires at least 35% reduction in regulated carbon dioxide emissions (using SAP 10.2) to be achieved on-site; the remaining regulated carbon dioxide emissions - to 100% - are to be offset off-site, see the following Figure as per the London Plan.



Figure 3-3 Zero carbon requirements

The London Plan **Policy SI2** shows that the GLA are concentrating on a truly **fabric first approach**, meaning they will expect to see how the fabric specification has been challenged as much as possible.

On-site regulated carbon dioxide emissions are to be reduced by means of a combination of measures, following the structure outlined in the GLA Energy Hierarchy:

#### **BURO HAPPOLD**

b. use available zero-emission or local secondary heat sources (in conjunction with heat pump, if required, c. use low emission combined heat and power (CHP) (only where there is a case for CHP to enable the delivery of

5) CHP and ultra-low NOx gas boiler communal or district heating systems should be designed to ensure that they

where a heat network is planned but not yet in existence the development should be designed for connection at

- Be Lean: reduce energy demand by improving the building's fabric efficiency and ventilation system, and reducing lighting consumption to meet the 10% (Domestic) and 15% (Non-Domestic) reduction required;
- Be Clean: exploit local energy resources where feasible and supply energy efficiently; and
- Be Green: install and use power generated by renewable energy sources on-site.
- In line with the GLA Guidance (Policy SI3, 9.3.8), renewable energy sources are to be installed regardless of whether the on-site 35% reduction target has been already achieved with the previous steps of the Energy Hierarchy. An exception can be made in cases where it can be demonstrated that renewable technologies are not technically feasible or economically viable for the considered development.
- Off-site carbon offsetting can be achieved through two main strategies:
  - Investing in existing local properties in the area, improving energy efficiency or installing renewable energy in order to generate an equivalent carbon reduction
  - Cash in lieu payment to the WCC

#### 3.4 Local Policy – Westminster City Plan 2019-2040

The Westminster City Plan 2019-2040 (April 2021) outlines the strategic ambitions of the wider Westminster area. The Local Plan sets out goals across all elements of the sustainability and energy spectrum. These policies are in alignment with the London Plan.

In summary requirements relating to energy and carbon include the following:

Policy 36A Energy - The council will promote zero carbon development and expects all development to reduce on-site energy demand and maximise the use of low carbon energy sources to minimise the effects of climate change. WCC through their Environmental Supplementary Planning Guidance (2022) support the UKGBC's Framework Definition of Net Zero as follows:

- Net Zero Carbon Construction: "When the amount of carbon emissions associated with a building's product and . construction stages up to practical completion is zero or negative, through the use of offsets or the net export of onsite renewable energy."
- Net Zero Carbon Operational: "When the amount of carbon emissions associated with the building's operational . energy on an annual basis is zero or negative. A net zero carbon building is highly energy efficient and powered from on-site and/or off-site renewable energy sources, with any remaining carbon balance offset."

Policy 36B Carbon Reduction - All development proposals should follow the principles of the Mayor of London's energy hierarchy. Major development should be net zero carbon and demonstrate through an energy strategy how this target can be achieved.

Policy 36C Carbon Reduction - Where it is clearly demonstrated that it is not financially or technically viable to achieve zero-carbon on-site, any shortfall in carbon reduction targets should be addressed via off-site measures or through the provision of a carbon offset payment secured by legal agreement.

Policy 36D Heat Networks - Developments should be designed in accordance with the Mayor of London's heating hierarchy. Major developments must connect to existing or planned local heat networks, or establish a new network, wherever feasible.

Policy 36E Overheating - All developments should be designed and operated to minimise the risk of internal overheating. Major development proposals will include a cooling strategy in line with the Mayor of London's cooling hierarchy.

#### GLA London Plan and Westminster City Plan (2019-2040)

- 1. 10% savings in residential and 15% in non-residential from energy efficiency alone
- 2. Following the energy and overheating hierarchy
- 3. 35% on-site total carbon savings (using SAP 10.2 future carbon factors)
- 4. Zero carbon through borough offsets
- 5. Minimise/justify the need for cooling
- 6. Decentralised heat networks with no net NOx and air quality impacts

#### **Building Regulation Part L** 3.5

Part L of the 2021 Building Regulations, refers to the Conservation of Fuel and Power. This document stipulates the minimum level of energy efficiency that buildings must be constructed to. It provides guidance on new build as well as refurbishments and covers all domestic and non-domestic buildings. It is a key component of the Government's objective to reduce carbon dioxide emissions originating from the built environment and establishes a very stringent performance standard.

New build non-domestic developments must comply with Approved Document L2, and domestic developments must comply with Approved Document L1.

For non-domestic buildings, dynamic simulation energy modelling or SBEM (Simplified Building Energy Model) is required for calculating the CO<sub>2</sub> emission rate of the development from comparing a notional building with the actual or proposed building. The notional building is of the same size and shape as the actual building, but with specified properties as outlined in Part L2 document.

For domestic buildings, compliance with the Standard Assessment Procedure (SAP 10.2) is required, with approved BRE software pack such as Design SAP (Elmhurst Energy) or FSAP (Stroma). The calculations on CO<sub>2</sub> emission rate of the residential development will compare a notional building with the actual or proposed building. The notional building is of the same size and shape as the actual building, but with specified properties as outlined in Part L1 document.

The updated Building Regulations Part L1 and L2 introduced a range of changes, including imperative uplifts. Along with Part L 2021, an updated Part F (Ventilation) version and a new Part O (Overheating) were release in December 2021. As part of Part L 2021, increased energy performance standards have been introduced, with around 30% less CO<sub>2</sub> emissions compared to Part L 2013, in line with the UK 2050 net zero commitments.

It is expected that under the upcoming Future Homes Standard a demand of at least 75% less carbon emission compared with Part L 2013 will be introduced for new homes. It is anticipated that the move towards district heating networks (DHN), heat pumps and high-efficient electrical heating, along with improved fabric (close to Passivhaus Standard), will meet UK current and future emissions reductions targets.



#### Figure 3-4 Part L, F and O 2021 Versions

#### 3.6 SAP 10.2 for Part L1 Compliance

Over the beginning of 2021, BRE approved SAP software providers such as Stroma and Elmhurst have been working hard into developing SAP 10.2 batches (1 to 4) to ensure adequate accuracy to assess Part L1 2021 under the updated SAP 10.2 conventions. Both Stroma and Elmhurst developed fully online software versions for SAP 10.2 calculations and Approved Document L 2021 compliance.

Unfortunately, compared to old SAP pack software with local desktop installation, the SAP 10.2 software online versions do not allow dwelling records to be exported to the old desktop SAP software packs (SAP 2012). As a result, applicants are not able to assess all the recorded Part L1 2021 dwellings (SAP 10.2) into desktop version for Part L1A 2013, without assessing from the beginning all individual units.

However, from 15 June 2022 all planning applications submitted on or after this date are required by the GLA to follow Part L 2021 compliance. Therefore, SAP 2012 software packs to assess Part L 2013 are no longer relevant.

#### 3.7 LETI Guidance

LETI or Low Energy Transformation Initiative (LETI) has recently published a series of important guidance on actions and targets to enable new developments to achieve the carbon reduction targets set by the London Plan and local boroughs.

Embracing a 'fabric first' approach and the incorporation of efficient and integrated systems to minimise the energy demand from heating, cooling, lighting and ventilation, the Westminster Environmental Planning Document (2022) recognises the recommendations on minimum design standards stated within LETI Climate Emergency Design Guide and encourages new developments to implement the indicative design measures as summarised in Table 3-2 wherever feasible and appropriate.

Table 3-2 LETI Design Guide Recommended Standards

|                      | Small scale residential<br>(terraced or semi-detached<br>homes) | Medium scale (up to 4<br>storeys) and large scale<br>(more than 4 storeys)<br>residential | Commercial            |
|----------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------|
| Fabric U-Values      |                                                                 |                                                                                           |                       |
| Walls                | 0.13 - 0.15                                                     | 0.12 - 0.15                                                                               | 0.12 - 0.15           |
| Floor                | 0.08 - 0.10                                                     | 0.10 - 0.12                                                                               | 0.10 - 0.12           |
| Roof                 | 0.10 - 0.12                                                     | 0.10 - 0.12                                                                               | 0.10 - 0.12           |
| Windows              | 0.80 (triple glazing)                                           | 1.00 (triple glazing)                                                                     | 1.00 (triple glazing) |
| WINDOWS              | -                                                               | 1.20 (double glazing)                                                                     | 1.20 (double glazing) |
| Doors                | 1.0                                                             | 1.0                                                                                       | 1.0                   |
| Efficiency Measures  |                                                                 |                                                                                           |                       |
| Air tightness        | <1 (m³/h.m²@50pa)                                               | <1 (m <sup>3</sup> /h.m <sup>2</sup> @50pa)                                               | <1 (m³/h.m²@50pa)     |
| Thermal bridging     | 0.04 (y-value)                                                  | 0.04 (y-value)                                                                            | 0.04 (y-value)        |
| g-value of glass     | 0.6 - 0.5                                                       | 0.6 - 0.5                                                                                 | 0.4 - 0.3             |
| Energy Use Intensity | 35 kWh/m²/year                                                  | 35 kWh/m <sup>2</sup> /year                                                               | 55 kWh/m²/year        |
| Space heating demand | 15 kWh/m <sup>2</sup> /year                                     | 15 kWh/m <sup>2</sup> /year                                                               | 15 kWh/m²/year        |

## 4 Energy Strategy

#### 4.1 Overview

The following section describes the energy strategy and methodology for assessment for the development. This assessment has been outlined to align with the *GLA Energy Assessment Guidance (June 2022)*. The energy strategy follows the GLA Lean, Clean, Green hierarchy (Part L 2021) and GLA Cooling Hierarchy (Figures 4-1 and 4-2).

The energy statement identifies the carbon emissions associated with the proposed development after each stage of the energy hierarchy. Regulated emissions are provided and, separately, those emissions associated with uses not covered by Building Regulations, i.e. unregulated energy uses for the whole site.



#### Figure 4-1 GLA Energy Hierarchy



Figure 4-2 GLA Cooling Hierarchy

#### 4.2 Energy Strategy

#### 4.2.1 Fabric First Approach

PGPS has been designed following high end industry standards and best practice such as London Energy Transformation Initiative (LETI) as a response to the climate emergency. The GLA London Plan, Energy Strategy guidance has also been considered in the design development of this project. This involves considering a fabric first approach where passive design measures are maximised to reduce energy demands before efficient equipment is installed.

The passive design measures include optimum façade fabric performance (U-values, y-values and g-values), minimising glazing percentages throughout the facades for solar gain reduction but ensuring good natural daylight (hence reducing lighting power) and minimal heat gains (reducing cooling power), articulating the façade to incorporate shading through window recess and inset balconies and incorporating openable panes through all façade orientations to allow for mixed-mode ventilation (reducing the MVHR demand).

#### 4.2.2 Energy Efficient HVAC Strategy

An all-electric and zero fossil fuel heating and cooling strategy has been proposed to minimise carbon emissions. This strategy is shown in Figure 4-3.

Three no. highly efficient Air Sourced Heat Pumps (ASHP) provide primary heating demand, 1 no. 4-pipe ASHP with heat recovery (heat recovery chiller) provides a portion of the cooling demand (35%) and heat harvesting, 1 no. Air-Cooled Chiller provides the remaining cooling load (65%) and 1 no. WSHPs provides the heating capacity to match the heat recovery heat rejection for temperature elevation. These units are to be located at the basement and roof level. Thermal stores in the basement plant room are used as a method to balance the output from the heat pumps. In times of low demand, energy from the heat pumps is stored in the form of hot water and once the stores are full, they are routinely discharged to ensure continuation of operation for the heat pumps. The discharge of the stores should be programmed to coincide with times of peak demand, such as the morning peak.

For affordable dwellings, MVHR systems incorporate DX units to temper the supply air. Comfort cooling will be provided to private development (PD) residential apartments and the flexible commercial areas on ground floor. At times of high cooling demand on-site, where the heat recovery chiller capacity is exceeded, the additional air-cooled chiller supplements on the remain load to cover, optimising the energy efficiency of the heat network.



Figure 4-3 PGPS HVAC strategy

#### 4.3 Energy Hierarchy Methodology

Predicted carbon emissions have been taken from computer modelling software (SBEM and SAP methodology), in line with guidance outlined in the document entitled *GLA Energy Assessment Guidance (June 2022)*.

The GLA energy hierarchy has been adhered to, and each stage 'Be Lean', 'Be Clean' and 'Be Green' has been explored. The following sections explain the GLA energy hierarchy inputs outlined for the Site.

#### Table 4-1 Summary of modelling assumptions through the energy hierarchy

|                                                                                              | Model assumptions and inclusions                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Baseline – Building Regulations Notional<br>Development<br>(as generated by Part L software) | <ul> <li>Baseline Target / Building Emission Rate (TER / BER) is modelled as a reference 'compliant' building, with the following features:</li> <li>Non-Domestic Areas: <ul> <li>Notional fabric and glazing areas</li> <li>Heat generation via low carbon heat source as per Actual (Heat Pumps)</li> </ul> </li> <li>Domestic Areas: <ul> <li>Notional fabric and glazing areas</li> <li>Heat generation via low carbon heat source as per Actual (Heat Pumps)</li> </ul> </li> </ul> |
| Lean - Energy efficiency measures<br>applied                                                 | <ul> <li>Improved energy efficient model, with the following features:</li> <li>Improved building fabric and air tightness over notional</li> <li>Energy efficiency measures as required to achieve 10% reduction for residential areas, on<br/>Part L 2021 (NCM and SAP) compliance</li> <li>Highly energy efficient lighting fittings and controls</li> </ul>                                                                                                                          |
| Clean - Connecting to District Heat<br>Network (DHN)                                         | - Same as Lean model                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Green -Renewable Energy Technology                                                           | Improved model, with the following features:<br>- Heat pumps<br>- PV panels                                                                                                                                                                                                                                                                                                                                                                                                              |
| Be Seen                                                                                      | A suitable operational energy assessment was carried out as described within Section 11 in this report                                                                                                                                                                                                                                                                                                                                                                                   |

## 5 Energy Baseline Demand and CO<sub>2</sub> Emissions – 'TER'

Baseline energy demands and associated CO<sub>2</sub> emissions have been estimated in line with the methodology set out in Section 4, following the GLA guidance for preparing energy statements. Part L compliance modelling has been carried out to assess the proposed development geometry using notional fabric and building services specification as stipulated in the National Calculation Methodology (2022).



Figure 5-1 PGPS Façade South

#### 5.1 Baseline Demand and CO<sub>2</sub> Emissions

Baseline energy demands have been estimated in line with the methodology set out in the previous section. For commercial areas, a thermal model using IES 2022 (ApacheSIM) has been created based on actual design geometry and systems following the NCM (2022) specifications. For domestic areas, all dwellings were modelled using FSAP 10.2 (Stroma) as per actual design geometry and systems following SAP 10.2 (2022) specifications.

The separate calculations have been generated using indicative service specifications and the following guidance documents: CIBSE Guide A: Environmental Design 2015 and 2013 Non-Domestic Building Services Compliance Guide. These were used in order to produce an estimate of the non-domestic energy demands and CO<sub>2</sub> emissions. Baseline energy demands and carbon emissions use Notional building parameters as outlined in Part L1 (domestic) and L2 (non-domestic) 2021.

#### 5.1.1 Non-Domestic Regulated emissions

The proposed development contains all non-domestic spaces including flexible commercial (retail), main entrance lobbies, communal corridors, and flexible amenity spaces, as shown in Figure 5-2. Domestic areas were modelled to account for the generated shading from the massing. However, the equivalent loads from the dwellings are assessed through a separate compliant software.



Figure 5-2 Non-Domestic spaces assessed

#### 5.1.2 Domestic Regulated emissions

3.1.2 As shown in Table 5-1, a total of 126 dwellings have been assessed, representing 23% sample units and area weighted to represent the entire development. The assessment accurately captures the energy and carbon performance of all dwellings.

#### Table 5-1 Dwellings assessed

| Block | Total dwellings<br>per block | Dwellings modelled<br>per block | % of dwellings<br>modelled |
|-------|------------------------------|---------------------------------|----------------------------|
| Ι     | 149                          | 21                              | 14%                        |
| J     | 98                           | 28                              | 29%                        |
| К     | 309                          | 77                              | 25%                        |
| Total | 556                          | 126                             | 23%                        |

| Modelled<br>Unit | Represen-<br>tative<br>Units                     | Modelled<br>Unit | Represen-<br>tative<br>Units | Modelled<br>Unit | Represen-<br>tative<br>Units | Modelled<br>Unit | Represen-<br>tative<br>Units | Modelled<br>Unit | Represen-<br>tative<br>Units |
|------------------|--------------------------------------------------|------------------|------------------------------|------------------|------------------------------|------------------|------------------------------|------------------|------------------------------|
| I_05_01          | 20                                               | J_05_01          | 13                           | K_01_01          | 1                            | K_09_01          | 9                            | K_30_05          | 1                            |
| I_05_02          | 20                                               | J_05_02          | 13                           | K_01_02          | 1                            | K_11_11          | 1                            | K_33_06          | 1                            |
| I_05_03          | 20                                               | J_05_03          | 13                           | K_01_03          | 1                            | K_12_10          | 1                            | K_33_05          | 1                            |
| I_05_04          | 12                                               | J_05_04          | 12                           | K_01_04          | 1                            | K_12_07          | 5                            | K_33_04          | 1                            |
| I_05_05          | 12                                               | J_05_05          | 12                           | K_01_05          | 1                            | K_12_06          | 1                            | K_33_03          | 1                            |
| I_05_06          | 12                                               | J_05_06          | 13                           | K_01_06          | 1                            | K_12_02          | 5                            | K_33_02          | 1                            |
| I_05_07          | 12                                               | J_16_01          | 1                            | K_01_07          | 1                            | K_12_01          | 4                            | K_33_01          | 1                            |
| I_01_01          | 1                                                | J_16_02          | 1                            | K_02_11          | 1                            | K_16_10          | 1                            | K_34_06          | 3                            |
| I_01_05          | 3                                                | J_16_03          | 1                            | K_02_10          | 1                            | K_16_09          | 1                            | K_34_05          | 3                            |
| I_01_07          | 3                                                | J_16_04          | 1                            | K_02_09          | 1                            | K_16_04          | 1                            | K_34_04          | 4                            |
| I_16_04          | 7                                                | J_16_05          | 1                            | K_02_08          | 1                            | K_16_03          | 1                            | K_34_03          | 3                            |
| I_16_05          | 6                                                | J_16_06          | 1                            | K_02_07          | 1                            | K_16_01          | 1                            | K_34_02          | 4                            |
| I_16_06          | 6                                                | J_16_07          | 1                            | K_02_06          | 1                            | K_11_08          | 1                            | K_34_01          | 4                            |
| I_22_03          | 2                                                | J_01_01          | 1                            | K_02_05          | 1                            | K_11_06          | 1                            | K_37_06          | 1                            |
| I_22_05          | 3                                                | J_01_02          | 1                            | K_02_04          | 1                            | K_21_07          | 12                           | K_37_05          | 1                            |
| I_22_06          | 3                                                | J_01_03          | 1                            | K_02_03          | 1                            | K_21_06          | 16                           | K_37_03          | 1                            |
| I_23_01          | 1                                                | J_01_04          | 1                            | K_02_02          | 1                            | K_21_05          | 16                           | K_38_03          | 1                            |
| I_23_02          | 1                                                | J_01_05          | 1                            | K_02_01          | 1                            | K_21_04          | 12                           | K_38_02          | 1                            |
| I_23_03          | 1                                                | J_01_06          | 1                            | K_09_11          | 7                            | K_21_03          | 13                           | K_38_01          | 1                            |
| I_14_05          | 2                                                | J_14_04          | 1                            | K_09_10          | 13                           | K_21_02          | 13                           | K_14_10          | 1                            |
| I_14_06          | 2                                                | J_14_05          | 1                            | K_09_09          | 14                           | K_21_01          | 12                           | K_14_06          | 1                            |
|                  |                                                  | J_15_01          | 1                            | K_09_08          | 8                            | K_17_07          | 1                            |                  |                              |
|                  |                                                  | J_15_02          | 1                            | K_09_07          | 9                            | K_17_01          | 1                            |                  |                              |
|                  |                                                  | J_15_03          | 1                            | K_09_06          | 8                            | K_29_04          | 1                            |                  |                              |
|                  |                                                  | J_15_04          | 1                            | K_09_05          | 14                           | K_32_06          | 4                            |                  |                              |
|                  |                                                  | J_15_05          | 1                            | K_09_04          | 14                           | K_32_05          | 3                            |                  |                              |
|                  |                                                  | J_15_06          | 1                            | K_09_03          | 14                           | K_32_02          | 4                            |                  |                              |
|                  |                                                  | J_15_07          | 1                            | K_09_02          | 9                            | K_32_01          | 4                            |                  |                              |
| Block I Total    | Block I Total 149 Block J Total 98 Block K Total |                  |                              |                  | 309                          |                  |                              |                  |                              |
|                  | Total Units                                      |                  |                              |                  |                              | 556              |                              |                  |                              |

#### 5.1.3 Unregulated emissions

- 3.1.3 electricity in all instances, with the relevant carbon factor applied to calculate associated carbon emissions.
- 3.1.4 Procedure for Energy Rating of Dwellings, SAP 10.2.
- 3.1.5 For both domestic and non-domestic buildings, the estimates are based on floor area and are therefore assumed not to change between each stage of the energy hierarchy.

#### Table 5—2 Estimated site-wide unregulated carbon emissions

|              | Unregulated Carbon Emissions |                                          |  |  |
|--------------|------------------------------|------------------------------------------|--|--|
| Туроlоду     | Tonnes<br>CO₂/year           | kg CO <sub>2</sub> /m <sup>2</sup> /year |  |  |
| Domestic     | 276.2                        | 6.4                                      |  |  |
| Non-Domestic | 13.9                         | 5.4                                      |  |  |
| Total        | 290.9                        | 6.3                                      |  |  |

#### 5.1.4 Baseline' predicted energy demand

The Baseline Target / Building Emission Rate (TER / BER) is modelled as a reference Building Regulations 'compliant' building, with the following features:

- Notional fabric and glazing areas -
- Heat generation via Heat Pumps (non-domestic) and individual gas boilers (domestic)

The following Table describe the predicted energy demands for the baseline building.

#### Table 5-3 'Baseline' predicted energy demands

|              | Baseline energy demand (MWh/ year) |                                    |         |           |          |                       |  |  |
|--------------|------------------------------------|------------------------------------|---------|-----------|----------|-----------------------|--|--|
| Typology     | Space heating                      | Hot water                          | Cooling | Auxiliary | Lighting | Unregulated<br>Energy |  |  |
| Domestic     | 952.0                              | 1344.5                             | 0.0     | 47.8      | 98.2     | 2,031.2               |  |  |
| Non-Domestic | 6.0                                | 11.0                               | 5.6     | 18.6      | 32.9     | 108.2                 |  |  |
| Subtotal     | 958.0                              | 958.0 1355.5 5.6 66.4 131.2 2139.3 |         |           |          |                       |  |  |
| Total        | 4,656                              |                                    |         |           |          |                       |  |  |

#### 5.1.5 Baseline' carbon emissions

The following Table describe the predicted carbon demands for the baseline building.

Table 5-4 'Baseline' predicted carbon emissions (using SAP 10.2)

| Townshipson  | <b>Baseline Regulated Carbon Emissions</b> |                              |  |  |
|--------------|--------------------------------------------|------------------------------|--|--|
| туроюду      | kg CO₂/year                                | Tonnes CO <sub>2</sub> /year |  |  |
| Domestic     | 492,600                                    | 492.6                        |  |  |
| Non-Domestic | 10,060                                     | 10.1                         |  |  |
| Total        | 502,660                                    | 502.7                        |  |  |

Non-domestic unregulated emissions and energy consumption have been estimated using the assumptions for equipment use provided in the NCM activity templates. These demands are assumed to be provided by grid

Domestic unregulated emissions from energy consumption such as electrical appliance usage and cooking have been estimated using the SAP methodology as outlined in Appendix L of The Government's Standard Assessment

## 6 Energy Demand Reduction - 'Lean'

This section outlines the strategic demand reduction and energy efficiency measures integrated in the Proposed Development and their impacts on energy demand and carbon reductions. The values provided are indicative fabric and services specifications which will be reviewed throughout the design process to ensure compliance with Part L and WCC recommendations.

#### 6.1 Passive Design

This section discusses the passive design measures that will be incorporated into the detailed design of the Proposed Development to aim for a 10% reduction over Part L1 2021 (domestic) of the Building Regulation, as illustrated in Figure 6-1.

Passive design aims to investigate ways to reduce the energy use of the project through passive means, such as improved orientation, massing, building fabric performance, daylight, and ventilation; many of which are limited with neighbouring properties on the site.

The following passive design approaches have been considered and incorporated to minimise the energy consumption of the proposed development:

- Optimised Window-to-Wall ratio to 33% to limit unwanted solar gains;
- High levels of airtightness and optimum U-values to minimise heat losses from the thermal envelope;
- Glazing with optimum g-value and U-value to reduce heat gains and losses;
- Recessed glazing and inset balconies for the provision of shading and reduction of cooling demand and control of glare.

The above measures make significant contributions to the passive energy efficiency at PGPS which will be further investigated at later design stages to quantify their benefits via approved energy modelling methods.



Figure 6-1 – PGPS passive design first approach

#### 6.2 Lean fabric and system improvements

Several fabric and services improvements have been proposed to provide a pathway to compliance. The key specifications and resulting energy demand and  $CO_2$  emissions are summarised by typology in the following Table. These inputs have been used to generate the Lean outputs which in turn have been used to show potential demand reduction and subsequent carbon emission reduction over baseline demands.

#### Table 6-1 PGPS Fabric Performance for Non-Domestic areas

| Building Element      | PGPS<br>Non-Domestic areas                           | Notional Building<br>Part L2 2021   | Notional Building<br>Part L2A 2013 |
|-----------------------|------------------------------------------------------|-------------------------------------|------------------------------------|
| External Wall U-value | 0.13 W/m <sup>2</sup> K                              | 0.18 W/m²K                          | 0.26 W/m²K                         |
| Floor U-value         | 0.13 W/m <sup>2</sup> K                              | 0.15 W/m²K                          | 0.22 W/m <sup>2</sup> K            |
| Roof U-value          | 0.13 W/m <sup>2</sup> K                              | 0.15 W/m²K                          | 0.18 W/m <sup>2</sup> K            |
| Glazing U-value       | Unitised System (Average)<br>Typical Bay: 0.75 W/m²K | 1.40 W/m²K                          | 1.60 W/m²K                         |
| a valuo               | Retail & Amenity: 0.30                               | Side-lit: 0.29                      | 0.40                               |
| g-value               | Circulation: 0.40                                    | Top-lit: 0.40                       | 0.40                               |
| Air Permeability      | 3 m <sup>3</sup> /m <sup>2</sup> hr                  | 3 m <sup>3</sup> /m <sup>2</sup> hr | 3 m³/m²hr                          |

#### Table 6-2 PGPS Fabric Performance for Domestic areas

| Building Element      | PGPS –<br>Domestic areas                                                                                | Notional Building<br>Part L1 2021   | Notional Building<br>Part L1A 2013  |
|-----------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------|
| External Wall U-value | 0.13 W/m <sup>2</sup> K                                                                                 | 0.18 W/m <sup>2</sup> K             | 0.18 W/m <sup>2</sup> K             |
| Floor U-value         | 0.13 W/m <sup>2</sup> K                                                                                 | 0.13 W/m <sup>2</sup> K             | 0.13 W/m <sup>2</sup> K             |
| Roof U-value          | 0.13 W/m <sup>2</sup> K                                                                                 | 0.11 W/m²K                          | 0.13 W/m <sup>2</sup> K             |
| Glazing U-value       | Unitised System (Average)<br>Typical Bay: 0.75 W/m <sup>2</sup> K<br>Balconies: 1.20 W/m <sup>2</sup> k | 1.20 W/m²K                          | 1.40 W/m²K                          |
| g-value               | 0.55                                                                                                    | 0.63                                | 0.63                                |
| Air Permeability      | 3 m <sup>3</sup> /m <sup>2</sup> hr                                                                     | 5 m <sup>3</sup> /m <sup>2</sup> hr | 5 m <sup>3</sup> /m <sup>2</sup> hr |

#### Table 6-3 PGPS Thermal Bridging Performance for Domestic areas

| SAP<br>Table Junctions Ref | Junction Details                                                                   | psi-values (W/m·K) |
|----------------------------|------------------------------------------------------------------------------------|--------------------|
| E2                         | Lintel                                                                             | 0                  |
| E3                         | Sill                                                                               | 0                  |
| E4                         | Jamb                                                                               | 0                  |
| E5                         | Ground floor (normal)                                                              | 0.16               |
| E20                        | Exposed floor (normal)                                                             | 0.32               |
| E21                        | Exposed floor (inverted)                                                           | 0.32               |
| E7                         | Party Floor between dwellings (in block of flats)                                  | 0                  |
| E23                        | Balcony within or between dwellings, balcony support<br>penetrates wall insulation | 0                  |
| E24                        | Eaves (insulation at ceiling level - inverted)                                     | 0.15               |
| E14                        | Flat roof                                                                          | 0.08               |
| E15                        | Flat roof with parapet                                                             | 0.20               |
| E16                        | Corner (normal)                                                                    | 0                  |
| E17                        | Corner (Inverted)                                                                  | 0                  |
| E18                        | Party wall between dwellings (applied to each dwelling)                            | 0.06               |
| E25                        | Staggered Party Wall between dwellings                                             | 0.12               |
| P4                         | Roof (insulation at ceiling level)                                                 | 0.48               |
| P7                         | Exposed Floor (normal)                                                             | 0.48               |

#### 6.3 Non-domestic building services

Table 6-5 sets out the recommended performance parameters for the heating, ventilation and air conditioning (HVAC) systems for the non-domestic areas of the building and the modelling assumptions for the Part L2 assessment. The nondomestic areas for PGPS are defined as flexible commercial and all related communal areas (e.g. lobby, corridors).

#### 6.4 Domestic building services

The energy performance values for the proposed building services used in the SAP modelling (10.2) and following Part L1 compliance are set out in the Table 6-4.

#### Table 6-4 PGPS Domestic building services specifications

| Element                              | Value                                  | Notes                                                                                                                                          |
|--------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Ventilation Specific Fan Power (SFP) | 0.58 W/L/s<br>0.55 W/L/s<br>0.63 W/L/s | Values provide are from SAP Product Characteristics Database<br>(PCDB) for Kitchen +1 wet rooms, Kitchen +2 wet rooms, Kitchen<br>+3 wet rooms |
| Ventilation heat recovery efficiency | 91 %                                   | Value from PCDB                                                                                                                                |
| Lighting                             | 100 %                                  | Energy efficient lighting to be specified                                                                                                      |

To minimise energy consumption from lighting within residential areas, the number of light fittings will be minimised whilst specifying 100% low energy lighting (compact fluorescent lights or LEDs) with appropriate controls.

#### 6.4.1 Heating, Cooling and Ventilation

Space heating and domestic hot water (DHW) will be provided from dedicated Heat Pump Units for all dwellings. They will be fed from a communal Heat Pump system installed on roof in conjunction with a Water Source Heat Pump unit at the basement. A communal system provides greater flexibility for decarbonisation of heat in the future. The Heat Pumps will have built-in metering capability to ensure tenants are billed for the heat used.

Comfort cooling systems are currently proposed for all private development (PD) dwellings in the scheme where noise risk could not be sufficiently mitigated through passive design measures alone. For affordable dwellings, MVHR systems incorporate DX units designed to temper the supply air provided by the mechanical ventilation system.

Background ventilation will be provided by individual Mechanical Ventilation with Heat Recovery (MVHR) units in each dwelling. This provides the simultaneous benefits of significantly reducing the heat loss from ventilation, ensuring good internal air quality and improving the internal acoustic environment in comparison to natural ventilation. All MVHR units will include a summer by-pass feature to reduce the risk of overheating.

#### Table 6-5 PGPS Be Lean Building energy modelling inputs (non-domestic)

| Element     | PGPS Part L                                                |                                                | Notional<br>building           | Part L minimum<br>requirements                                    |                                                                   |
|-------------|------------------------------------------------------------|------------------------------------------------|--------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|
|             | Floor U-value: 0.13 W/m <sup>2</sup> k                     |                                                |                                | Floor U-value:<br>0.15 W/m²k                                      | Floor U-value: 0.18<br>W/m <sup>2</sup> k                         |
|             | Roof U-value: N/A                                          |                                                |                                | Roof U-value:<br>0.15 W/m <sup>2</sup> k                          | Roof U-value: 0.18<br>W/m <sup>2</sup> k                          |
|             | Air Permeability: 3 m <sup>3</sup> /m <sup>2</sup> hr      |                                                |                                | Air Permeability:<br>3 m <sup>3</sup> /m <sup>2</sup> hr          | Air Permeability: 8<br>m <sup>3</sup> /m <sup>2</sup> hr          |
| Fabric      | External Wall U-value: 0.13 W/m <sup>2</sup> k             |                                                | External Wall U-               | External Wall U-                                                  |                                                                   |
|             | Basement wall (cores only): 0.20 /m <sup>2</sup> k         | W/m <sup>2</sup> k                             | value: 0.26 W/m <sup>2</sup> k |                                                                   |                                                                   |
|             | Glazing U-value: 1.2 W/m²k                                 |                                                |                                | Glazing U-value:<br>1.4 W/m <sup>2</sup> k                        | Glazing U-value:<br>1.6 W/m <sup>2</sup> k                        |
|             | g-value: 0.3 in the entrances, flexible commerc            | cial. 0.4 in circulatio                        | on                             | g-value: 0.28                                                     | g-value: N/A                                                      |
|             | Fan coils - Central AHUs                                   | Liest Duran                                    |                                |                                                                   |                                                                   |
| Heating     | Rads                                                       | Air-source Heat                                | Air-source Heat                |                                                                   |                                                                   |
| neating     | Radiators + extract                                        | Generator<br>Seasonal CoP                      | 5                              | Pump: SCOP 2.64                                                   | Pump: SCOP 2.5                                                    |
|             | Supply & Extract (kitchen)                                 |                                                |                                |                                                                   |                                                                   |
|             | For cole. Control AUUs                                     | Ventilation<br>Heat Recovery<br>Efficiency (%) | 85                             | Vent heat rec:<br>76% eff, SPF 0.6 –<br>1.8 depending on<br>space | Vent heat rec: 65%<br>eff, SPF 0.4 – 2.0<br>depending on<br>space |
|             |                                                            | Ventilation<br>Fresh Air SFP<br>(W/(l/s))      | 1.4                            |                                                                   |                                                                   |
| Ventilation | Radiators + extract                                        | Ventilation<br>Heat Recovery<br>Efficiency (%) | N/A                            |                                                                   |                                                                   |
|             |                                                            | Ventilation<br>Fresh Air SFP<br>(W/(l/s))      | 0.4                            |                                                                   |                                                                   |
|             | De l'atom                                                  | Ventilation<br>Heat Recovery<br>Efficiency (%) | N/A                            |                                                                   |                                                                   |
|             | Radiators                                                  | Ventilation<br>Fresh Air SFP<br>(W/(l/s))      | N/A                            |                                                                   |                                                                   |
| Hot Water   | Heat Pump Electric Water Source                            | Hot Water<br>Generator<br>Seasonal COP         | 3.8                            | Water-source<br>heat pump: SCOP<br>2.86                           | Water-source heat pump: SCOP 2.0                                  |
| Cooling     |                                                            | Cooling<br>Generator<br>Chiller Type           | Air Cooled                     | FCUs provided by                                                  | FCUs provided by                                                  |
|             | Fan Coil Units - Central AHUs<br>Generator<br>Seasonal CoP |                                                | 5                              | chillers, SEER –<br>5.78                                          | air cooled chillers,<br>SEER – 4.5                                |
|             | Lamp - 120 lm/W, Display lighting 80 lm/W                  |                                                |                                | Lamp - 95 lm/W,<br>Display lighting<br>95 lm/W                    | Lamp - 95 lm/W,<br>Display lighting 80<br>lm/W                    |
| Lighting    | Occupancy sensing time switch, Constant illun spaces       | ninance control in                             | circulation                    | Daylight<br>Dimming in all                                        | N/A                                                               |
|             | Daylight Dimm                                              | spaces                                         | IN/A                           |                                                                   |                                                                   |

#### 6.5 'Lean' predicted energy demand

The Lean calculations demonstrate an improved model from energy efficient measures and optimum envelope compared to Baseline, with the following features:

- Improved glazing percentage, building fabric and air tightness over notional
- Energy efficiency measures as required to achieve 10% reduction on Part L 2021 compliance (residential)
- Highly energy efficient lighting fittings and controls

The following Tables describe the predicted energy and carbon demands for the Lean building.

#### Table 6-6 Predicted Lean energy demands

|              | Lean energy demand (MWh/ year) |           |         |           |          |                       |  |  |
|--------------|--------------------------------|-----------|---------|-----------|----------|-----------------------|--|--|
| Туроlоду     | Space heating                  | Hot water | Cooling | Auxiliary | Lighting | Unregulated<br>Energy |  |  |
| Domestic     | 723.3                          | 1466.1    | 59.2    | 214.2     | 100.4    | 2031.2                |  |  |
| Non-Domestic | 10.0                           | 10.2      | 7.0     | 21.1      | 22.0     | 108.2                 |  |  |
| Subtotal     | 733.3                          | 1476.3    | 66.2    | 235.3     | 122.5    | 2139.3                |  |  |
| Total        | 4,773                          |           |         |           |          |                       |  |  |

#### 6.6 'Lean' Carbon Emissions

 Table 6-7 Predicted Lean carbon emissions (using SAP 10.2 carbon factors)

|              | Baseline Regulated Carbon Emissions |                              | Lean Regulated Carbon Emissions |                              |                                |  |
|--------------|-------------------------------------|------------------------------|---------------------------------|------------------------------|--------------------------------|--|
| Туроlоду     | kg CO₂/year                         | Tonnes CO <sub>2</sub> /year | kg CO₂/year                     | Tonnes CO <sub>2</sub> /year | % Improvement<br>over Baseline |  |
| Domestic     | 492,600                             | 492.6                        | 399145.9                        | 399.1                        | 19.0%                          |  |
| Non-Domestic | 10,060                              | 10.1                         | 9,601                           | 9.6                          | 4.6%                           |  |
| Total        | 502,660                             | 502.7                        | 408,747                         | 408.7                        | 18.7%                          |  |

The Proposed Development Residential Be Lean building currently achieves **19%** reduction through energy efficiency measures and based on optimised fabric performance, including typical bay façade average as described in Table 6-2. Non-Domestic Be Lean achieves **4.6%** carbon savings. The commercial areas at PGPS represent a minor percentage of the scheme, but feed with a highly efficient energy network and an optimum envelope that follows LETI recommendations. Building Regulation Part L2 2021 for commercial spaces states a notional building with the same system as the actual building compared to a notional building on gas boilers (Part L 2A 2013), thus a stringent comparison to reach the 15% Be Lean commercial target.

#### 6.7 Dwelling Fabric Energy Efficiency (DFEE)

Criterion 1 of Part L1 of Building Regulations stipulates that all new dwellings must achieve a minimum level of fabric energy efficiency. This requirement is satisfied by demonstrating the Dwelling Fabric Energy Efficiency (DFEE) is lower than or equal to the Target Fabric Energy Efficiency (TFEE) as calculated using the SAP 10.2 methodology (2022).

SAP calculations have been carried out for all dwellings in the development using the fabric specification provided in Table 6-2 and Table 6-3. The results, displayed in Table 6-8, show that an improvement over the Building Regulations target will be achieved using the proposed building fabric specification for all dwellings.

#### Table 6-8 PGPS Fabric Energy Efficiency results

| FEE Compliance                       | DFEE (kWh/m²/yr) | TFEE (kWh/m²/yr) | Percentage of<br>Improvement (%) |
|--------------------------------------|------------------|------------------|----------------------------------|
| Residential Site-Wide<br>(556 Units) | 26.07            | 26.15            | 0.32%                            |

## 7 Energy Heating Infrastructure including CHP - 'Clean'

#### 7.1 Addressing the London Plan heating hierarchy

The GLA promotes that once the demand for energy has been minimised, all planning applications must demonstrate how their energy systems will exploit local energy sources (such as secondary heat) and supply energy efficiently and cleanly to reduce carbon emissions, by following the heating hierarchy in London Plan Policy SI 3.

#### 7.2 Connection to existing heating or cooling networks

Figure 7-1 illustrates the proximity of PGPS to an existing district heat network. The Proposed Development, highlighted in blue, is shown to be ~165m away from the Church Street heat network and an existing on-site CHP led energy centre called West End Gate (Figure 7-2). This heat network is shown as an 'Existing heat network' on the official London Heat map published by the Mayor's office. There is in fact no heat network here and this was confirmed by the Senior Development Delivery Manager from Growth Planning and Housing of Westminster council via email in March 2022.

The West End Gate (WEG) energy centre has designed to provide both peak capacity and also to meet the annual heat demand for Blocks A to H. A low carbon heat network supplied by a CHP engine and boilers from a single energy provides space heating and domestic hot water (DHW) for all residential and non-residential units in the WEG masterplan site.



Figure 7-1 Existing Heat Network PGPS (https://maps.london.gov.uk/heatmap)



Figure 7-2 Indicative WEG heat network routing

The West End Gate heat network has the pipework installed for a future connection to the proposed (not existing) Church Street heat network should that heat network be installed. This is illustrated in Figure 7 - 2 above.

For PGPS, a series of energy options were considered for heating and cooling systems for application on-site and in alignment with West End Gate strategy and London Plan Policy SI 3. The energy strategy with a potential WEG connection assessed the incorporation of high temperature Air Source Heat Pumps at the roof of PGPS to provide 60% of the base heat load for all parts of the masterplan (Paddington Green Police Station Blocks I, J, K, and A to H) along with the provision of heat recovery chillers to feed the commercial areas at PGPS with heat harvesting to the site wide heat network (Figure 7-3). However, due to the constraints on roof space availability for the estimated number of ASHP units, considerable reduction of commercial areas with low opportunity for heat harvesting, and the reliance of incorporating new gas boilers within WEG energy centre, resulted into a non-viable solution for the Proposed Development.

The heating demand of the scheme is fulfilled via on-site all electric heat source (Air Source Heat Pumps) as described in Section 4 and supplemented by an Air-Cooled Chiller for meeting peak cooling demands when the useful heat from the cooling process cannot be used elsewhere. A highly efficient Water Source Heat Pump also takes part to the on-site heat network to allow for heat harvesting. The facility will be provided in the new PGPS community heat network to back connect to the WEG community heat network for resilience purposes. In times of low demand or when maintenance is being carried out on either of the networks the central plant in one can feed the other and vice versa.

This also ensures that the DHN connection pipework which has been installed for WEG can be used to also connect the PGPS community heat network to the same DHN connection.





#### 7.3 Heating strategy

The application of a CHP system at PGPS has been ruled out of the energy strategy for this Site for several reasons. These are outlined below:

- Limited carbon emissions savings now and particularly in the future when compared with an increasingly decarbonised electrical grid;
- Negative impact on local air quality due to high NO<sub>x</sub> emissions;
- Heating source against current UK strategy on grid decarbonisation. The change in the relative carbon content of electricity and gas signifies all-electric alternative heating sources will have lower carbon emissions than the more traditional gas engine CHP.

As a result, this option has not been proposed or modelled. Alternatively, a highly efficient heat pump systems have been specified, providing heating and hot water where necessary.

The PGPS energy centre has been designed to include a heating connection with WEG and its future DHN connection to Church Street. Which is part of the WEG decarbonisation strategy. While design stage progresses, opportunities for heat harvesting from the Site's low carbon heat network to feed WEG energy centre will be investigated and detailed further.



Figure 7-4 Schematic of PGPS clearly identifying facility to back connect into WEG community heat network its future DHN connection

## 8 Energy Renewable Energy - 'Green'

#### 8.1 Low Zero Carbon Technologies

This section provides a summary of the feasibility of low and zero carbon (LZC) technologies for the proposed building, in line with GLA recommendations.

An assessment of the project context relating to LZC technologies has been made, including the drivers for installing LZC technologies, the site opportunities and constraints, the estimated energy demands of the development and the potential for any financial support. The following aspects were addressed:

- Energy generated and CO<sub>2</sub> savings
- Life cycle costs and payback including grants and incentives
- Space and land use requirements
- Local planning requirements, including noise
- Potential to export energy from the system
- Potential for energy storage

Table 8-1 presents the findings of the feasibility analysis for the suitable LZC technology options for the project. The conclusions of this analysis are as follows:

- Air and Water Source Heat Pump (ASHP) is considered as the most viable solution for satisfying the space heating and hot water demand of the building, considering the grid will decarbonise in years to come. They can also recover waste heat from cooling circuits for covering additional loads in the building, significantly increasing the system efficiency
- Solar PV is also considered a viable method of generating renewable electricity and reducing the carbon emissions considering the effectiveness and space constraints
- Ground Source Heat Pump (GSHP) systems and solar thermal are found not viable due to space requirement, high capital costs and high payback periods
- Small scale turbines (horizontal or vertical axis) were considered unsuitable for the Site due to the space requirements, noise impact, high capital cost and long payback compared to the total energy savings estimations.

#### Table 8-1 – PGPS LZC feasiblity

#### Option Suitability for Scheme



The European directive recognises air source heat pur way to the ground sourced technologies, the air is use technological developments have increased capacity should be located externally, and location should con

As described in section 4, air source heat pumps are p network aiming for a low carbon option that will achie system efficiency. It is proven then to be highly effect considered as a viable solution.



Ground Source

Heat pumps

Source Heat

pumps

There are a number of ways in which the ground can be boreholes and putting the pipe work in piles. In all cas pumped around. Open loop systems tend to use an ac this technology is not widely used in the UK which ma England, the ground make-up is such that clay is typic surface; unfortunately, clay does not allow for the diss free movement of water.

Even though this technology could provide significant conditions and heat balances. Further ground investig option could be considered at masterplan scale in the



Electrical generation using solar photovoltaic panels is urban development. The proposed roof spaces offer s space limitations for plant installation requirements. A for uplifting the energy savings from renewables. The screens is considered suitable for the scheme for uplift

Solar panels can be used to provide domestic hot wat preheat the water stored up in a cylinder. These systems are efficient during summer months, w

I nese systems are efficient during summer months, w proven to be significant. In addition, solar thermal sys It is therefore not a viable option for the current scher available to reduce further the electrical load.



Solar Thermal

Biomass boilers are not suitable for this project due to dioxide and particulate matter in close proximity to a



Wind turbines harness the kinetic energy in the wind mechanical turbine. The efficacy of wind turbines dep swept area of the turbine's blades. In an urban enviro characteristics are generally turbulent owning to the s level. Its installation within the Proposed Developmen of surrounding residents. There is also not enough rou limitations on the building's profile.



The site is not located in near proximity with a watero small-scale hydropower, tidal power or wave power w required would have a high capital cost and long payl river traffic or local ecosystems.

🛑 Viable 🛛 😑 To be fur

|                                                                                                                                                                                                                                                                                                                                                                                                                                   | Viability |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| mps as a renewable energy source. In a similar<br>ed to provide thermal energy. Recent<br>and efficiency of ASHPs. Air source heat pumps<br>isider ambient noise emissions.<br>proposed to supply the community heating<br>eve minimised carbon emissions and improved<br>ive to deliver high CO <sub>2</sub> savings and thus                                                                                                    |           |
| be used: horizontal pipes in the ground; vertical<br>ses, the system is closed, and the working fluid is<br>iquifer deep underground to act as a heat sink;<br>ay pose an element of risk. In Southeast of<br>cally found in the tens of metres under the<br>sipation of heat effectively as it does not allow the<br>t carbon savings; it is subject to ground<br>gations are needed, and it is suggested that this<br>e future. | •         |
| s a typical, cost-effective solution for high density<br>some opportunity for PV panel installation, albeit<br>A PV array, even limited, will benefit the scheme<br>refore, a 90-degree PV array installed to the plant<br>fting the energy savings from renewables.                                                                                                                                                              |           |
| ter, as by exploiting the absorbed sun energy can                                                                                                                                                                                                                                                                                                                                                                                 |           |
| where the hot water demand of the scheme is not<br>stems have a long payback and high capital cost.<br>me and instead PV panels can be mounted in the                                                                                                                                                                                                                                                                             |           |
| o the risk of producing harmful levels of nitrogen<br>densely populated area.                                                                                                                                                                                                                                                                                                                                                     |           |
| and convert this to electrical energy using a<br>ends heavily on (i) the wind speed and (ii) the<br>nment such as the area of PGPS Scheme, wind<br>surrounding buildings obstructing its path at low<br>at would have significant impacts on the amenity<br>of space to make this viable and there are other                                                                                                                      |           |
| course. Electricity generation technologies such as<br>yould not be appropriate as the infrastructure<br>back in addition to the risk of interference with                                                                                                                                                                                                                                                                        |           |

#### 8.2 Solar Photovoltaic Panels (PVs)

Photovoltaic panels are semi-conductors which convert incident sunlight into electricity. They work well in a semi-rural or urban context as long as unshaded space can be identified.

The proposed PV Panels area equates to 313m<sup>2</sup> based on an integrated solution for 90-degree mounting PVs on plant rooms at roof. To maximise exposure to solar radiation and allow for roof geometry, south, southeast and south west facing flat 170 No. PVs are proposed.



#### Figure 8-1 PGPS PV panels array

#### Table 8—2 Estimated PV Generation

| Description                          | Block I | Block J | Block K   | Total  |
|--------------------------------------|---------|---------|-----------|--------|
| Number of Panels                     | 40      | 50      | 80        | 170    |
| kWp                                  | 16      | 20      | 32        | 68     |
| Area (m <sup>2</sup> )               | 74      | 92      | 147       | 313    |
| Tilt                                 | 90°     | 90°     | 90°       | -      |
| Orientation                          | South   | South   | SE and SW | -      |
| Annual Energy Generation (kWh/Annum) | 14,366  | 17,958  | 28,733    | 6,1057 |

#### 8.3 'Green' predicted energy demand

The Green calculations demonstrate an improved model from renewable energy measures, with the following features:

- Highly efficient heat pumps
- Solar PV panels

The following Tables describe the predicted energy and carbon demands for the Green building.

The Proposed Development Green building currently achieves 49% through renewable energy only and 67% on-site carbon emissions savings.

#### **Table 8-3 Predicted Green energy demands**

|              | Green energy demand (MWh/ year) |           |         |           |          |                       |  |  |
|--------------|---------------------------------|-----------|---------|-----------|----------|-----------------------|--|--|
| Туроlоду     | Space heating                   | Hot water | Cooling | Auxiliary | Lighting | Unregulated<br>Energy |  |  |
| Domestic *   | 278.9                           | 572.9     | 223.8   | 207.4     | 103.1    | 2031.2                |  |  |
| Non-Domestic | 8.6                             | 8.8       | 9.8     | 28.9      | 30.5     | 20.7                  |  |  |
| Subtotal     | 287.5                           | 581.7     | 233.7   | 236.4     | 133.6    | 2051.9                |  |  |
| Total        | 3,524.8                         |           |         |           |          |                       |  |  |

\* Values unchanged from previous submission as they are no longer available due to a software fault. Does not impact subsequent carbon emissions figures

#### 'Green' Carbon Emissions 8.4

This section outlines the strategic approach applied to renewable energy to achieve the necessary carbon reduction requirement across the Proposed Development. It outlines the technologies to be implemented and their effectiveness across the site, as well as their impact on site wide carbon emissions.

Emissions from the heat pumps have been included in the green emissions section to follow, as heat pumps are considered a renewable technology. In addition, PV panels are proposed.

Emissions shown include the savings from the high efficiency heat pump systems and 313 m<sup>2</sup> area of PV panels using the SAP 10.2 carbon factors.

#### Table 8-4 Predicted Green carbon emissions (using SAP 10.2 carbon factors)

|              | Baseline Regulated Carbon Emissions |                              | Green Regulated Carbon Emissions |                              |                                |  |
|--------------|-------------------------------------|------------------------------|----------------------------------|------------------------------|--------------------------------|--|
| Typology     | kg CO₂/year                         | Tonnes CO <sub>2</sub> /year | kg CO₂/year                      | Tonnes CO <sub>2</sub> /year | % Improvement<br>over Baseline |  |
| Domestic     | 492,600                             | 492.6                        | 155,803                          | 155.8                        | 68.4%                          |  |
| Non-Domestic | 10,060                              | 10.1                         | 9,215                            | 9.2                          | 8.4%                           |  |
| Total        | 502,660                             | 502.7                        | 165,018                          | 165.0                        | 67.2%                          |  |

#### **Energy Hierarchy Conclusions** 9

The Lean, Clean, and Green (as outlined by the London Plan) modelling results have been collated in the format required for the planning submission as outlined in the GLA's Energy Assessment Guidance (2022). The following Figure and Table outline the carbon emissions of the site using the SAP 10.2 emissions factors and Part L 2021.



Figure 9-1 PGPS Carbon Savings throughout the energy hierarchy (Part L 2021)

Table 9-1 Predicted Site Wide regulated CO<sub>2</sub> emissions saving after each stage of the Energy Hierarchy (Part L 2021)

| Part L 2021                                      | Total regulated<br>emissions<br>(Tonnes CO <sub>2</sub> /year) | CO <sub>2</sub> savings<br>(Tonnes CO <sub>2</sub> /year)    | Percentage<br>saving<br>(%)            |
|--------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------|
| Part L 2021 Baseline                             | 502.7                                                          | -                                                            | -                                      |
| Be Lean: savings from<br>energy demand reduction | 408.7                                                          | 93.9                                                         | 19%                                    |
| Be Clean: savings from<br>heat network           | 408.7                                                          | 0                                                            | 0%                                     |
| Be Green: savings from renewable energy          | 165.0                                                          | 243.7                                                        | 48%                                    |
| Cumulative on-site savings                       | -                                                              | 337.6                                                        | 67%                                    |
|                                                  |                                                                | CO <sub>2</sub> savings off-set<br>(Tonnes CO <sub>2</sub> ) | CO <sub>2</sub> off-set payment<br>(£) |
| Total site wide off-set                          | -                                                              | 4,950.5                                                      | 470,302                                |

#### **Overheating** 10

#### 10.1 Overview

10.1.1 Overheating can be defined as a sensation of discomfort resulting from excessive temperature. The sensation of overheating is subjective; the conditions at which it occurs vary between people. Consequently, there are multiple metrics for assessing overheating.

The London Plan requires that major development proposals should demonstrate how the design, materials, construction and operation of the development would minimise overheating and also meet its cooling needs. It also states that new development in London should be designed to avoid the need for energy intensive air conditioning systems as much as possible.

The Proposed Development has applied the cooling hierarchy in Policy SI 4 of the London Plan, providing measures to reduce the demand for cooling through the following categories:

#### Table 10—1 Overheating Strategy

| Minimise internal<br>gains                                                                                                                                                                                                                                                | Reduce heat<br>entering the<br>building                                                                                                                                                                                                                                              | Managing heat<br>through materials                                                                                                          | Passive<br>ventilation                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mechanical<br>ventilation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Active cooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Energy efficient<br>lighting, efficient<br>domestic<br>equipment, no<br>communal heat<br>sources will be<br>specified.<br>Heat gains from<br>communal heating<br>will therefore not<br>be present in<br>communal areas.<br>Pipe lengths are<br>consequently<br>minimised. | Passive Design<br>Principles in line<br>with LETI have<br>been prioritised<br>across the scheme,<br>including<br>optimised<br>U-values, y-values<br>and g-values.<br>A WWR 33% is<br>proposed,<br>alongside recess<br>glazing and inset<br>balconies to<br>provide solar<br>shading. | Building's thermal<br>mass used to store<br>heat in the day and<br>release at night,<br>heat storage in the<br>day and release at<br>night. | Openable windows<br>and balcony doors<br>have been<br>designed to meet<br>fresh air and<br>ventilation<br>requirements in<br>line with Building<br>Regulations Part O<br>(dwellings). Due to<br>acoustic<br>constraints,<br>residents will have<br>the option to use<br>natural ventilation<br>for high levels of<br>ventilation.<br>However, comfort<br>cooling and<br>tempered cooling<br>are provided to<br>assure thermal<br>comfort when the<br>external noise level<br>are of high risk. | Mechanical<br>ventilation with<br>heat recovery<br>(MVHR) is<br>proposed within<br>the apartments and<br>Fresh Air<br>Ventilation with<br>heat recovery<br>through Air<br>Handling Units<br>(AHU) to flexible<br>commercial; the<br>heat recovery<br>system will include<br>a summer by-pass<br>mode to allow for<br>free cooling of the<br>space using<br>external air. MVHR<br>systems will be<br>designed and sized<br>to meet whole unit<br>background<br>ventilation<br>requirements<br>ensuring that<br>window opening is<br>only required for<br>purge scenarios. | Active cooling is<br>considered only<br>where alternative<br>natural ventilation<br>strategies do not<br>provide sufficient<br>temperatures and<br>where noise levels<br>are at risk.<br>Comfort cooling<br>(private<br>development) and<br>tempered air<br>(affordable) are<br>provided to<br>dwellings due to<br>acoustic constraints<br>where windows are<br>not feasible to be<br>open at night.<br>Tempered air is<br>only provided as<br>'temperature<br>lopping' to<br>maintain internal<br>temperatures at a<br>comfortable range. |

#### **10.2 Acoustic Levels**

Study undertaken by Acoustic Consultant (Ramboll) identified high noise levels around façade oriented towards Harrod and Edgware Road, resulting the reliance of openable windows for fresh air provision into exceeded internal noise levels within the dwellings.

Part O Building Regulation states that in locations where external noise may be an issue, the overheating mitigation strategy should take account of the likelihood that windows will be closed during sleeping hours (11pm to 7am). Windows are likely to be closed during sleeping hours if noise within bedrooms exceeds the following limits.

a. 40dB LAeq, T, averaged over 8 hours (between 11pm and 7am).

b. 55dB LAFmax, more than 10 times a night (between 11pm and 7am).

The noise levels on Site have led to different strategies being applied to all apartments, as presented within section 10-5.

#### **10.3 Domestic Overheating Methodology**

#### 10.3.1 Part O 2021

Building Regulations Part O introduces a new requirement to assess and limit the risk of overheating in residential buildings. Following guidance from Approved Document O requires compliance with:

1. Either design limits under the new Simplified Method, OR comfort criteria under the dynamic thermal modelling route based on CIBSE TM59.

#### AND

Requirements for "usability", including noise, pollution, safety (protection from falling and entrapment), and security, which apply to openings and features such as louvres and shading.



#### Figure 10-1 Part O Methodology routes

PGPS domestic overheating analysis was based on dynamic thermal modelling in IES VE 2022 software, following the comfort criteria based on CIBSE TM59, as well as it accounts for requirements, as represented on the diagram Methodology routes (Figure 10-1).

#### 10.3.2 CIBSE TM59

The following criteria are specified by CIBSE TM59 for dynamic thermal modelling, which must be met in order to comply with Part O:

a) Criterion 1 – for living rooms, kitchens and bedrooms must not exceed the adaptive maximum acceptable temperature for more than 3% of occupied hours. This criterion is taken from CIBSE TM52 Crit. 1. This criterion sets a limit for the number of hours that the operative temperature can exceed the threshold comfort

temperature (upper limit of the range of comfort temperature) by 1°K or more during the occupied hours of a typical non-heating season (1st May to 30th September). The first requirement can be visually represented as:



#### Figure 10-2 Visual representation of the TM52 Criterion 1, pass/fail.

b) Criterion 2 – for bedrooms only must have no more than 32 hours (1%) of night-time hours (22:00 to 07:00) above 26°C in the design year.

#### 10.3.3 CIBSE A

Where design measures and the use of natural fresh air ventilation is not enough to guarantee the occupant's comfort (in line with the cooling hierarchy set out in London Plan) then the development should identify the cooling requirement of the different elements of the development.

For air-conditioned and mechanically ventilated spaces, the winter and summer operative temperatures should be assessed to ensure they fall within the upper and lower limits set by CIBSE Guide A (*CIBSE Guide A 2018 – Table 1.5: Recommended comfort criteria for specific applications*).

CIBSE Guide A reads: "The predicted indoor temperature or values of PNV should not exceed the tabulated values for more than 3% of occupied hours". CIBSE Guide A recommends that within educational spaces the operative temperature should not exceed 26°C for more than 3% the annual occupied hours.

#### **10.4 Domestic Thermal Modelling Assumptions**

The overheating assessment has been carried out using IES Virtual Environment software 2022. The overheating risk has been assessed using the CIBSE TM59 and CIBSE A criteria. Values for internal gains and occupancy profiles are aligned with CIBSE TM59 guidance and specifications.



Figure 10-3 Computer model used for overheating analysis in IES-VE 2022

The core assumptions and inputs for domestic areas used in the modelling are detailed in Table 10-2.

#### Table 10-2 Thermal comfort modelling inputs

| ltem                                    | Modelling input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Calculation                             | Software - IES Virtual Environment v. 2022 1.0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                         | Calculation tool – ApacheSIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Weather<br>files                        | The compliance analysis has been carried out using the baseline Design Summer Year (DSY) for London Central, the most representative weather data for lower density urban and suburban areas, as described in CIBSE TM49 (2014). CIBSE TM49 sets out the DSY weather data sets for assessing overheating risk. The undertaken overheating assessment was based primarily on DSY1 file, representing a moderately warm summer. The weather data set for London Heathrow are listed below: <ul> <li>DSY1 – Moderately warm summer (1989)</li> <li>DSY2 – Intense single warm spell (2003)</li> <li>DSY3 – Long period of persistent warmth (1976)</li> </ul> For context, TM49 demonstrates the probability of a summer being as warm as or warmer than DSY1 is 1 in 9, for DSY2 this decreases to 1 in 19 and 1 in 27 for DSY 2 and 3 respectively (based on weighted cooling degree hours metric). |
| Fabric<br>performance                   | As per Tables 6-2 and 6-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Glazing<br>opening                      | Operable panes were modelled as operating manually. It is assumed that occupants close the windows when the outside air temperature exceeds the internal air temperature.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                         | Operable pane design was assumed as fully openable during day and night for the CIBSE TM59 assessment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                         | Figure 10-4 Opening types                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Blinds                                  | Blinds weren't incorporated to assess the scenarios following Part O recommendations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| External shading                        | Façade details were incorporated to the thermal model as per Architect aspirations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Internal<br>door<br>opening<br>strategy | All Internal doors were modelled as being open during summer period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Internal<br>Gains                       | Occupancy, Equipment and Lighting internal gains and profiles have been taken from CIBSE TM59 and had been applied for different size of apartments (1, 2, and 3 bedroom). Examples of occupancy profiles used are shown in Figure 10-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |



#### 10.5 Domestic Thermal Modelling Overheating Results

#### **10.5.1 Modelling Scenarios**

Given the input parameters described in section 10.6, the assessment was carried out as per the following scenarios.

Table 10-3 Dwellings assessed

| Block | Level | Apartments Modelled |
|-------|-------|---------------------|
| Ι     | 13    | 7                   |
|       | 22    | 6                   |
|       | 15    | 6                   |
| J     | 16    | 7                   |
|       | 21    | 7                   |
| ĸ     | 37    | 6                   |
| Total | 6     | 39                  |

#### Table 10-4 Modelling scenarios

| Scenario | Operability Profile<br>Daytime | Operability Profile<br>Night-time | Blinds | Comfort Cooling<br>(Private Development)<br>Tempered Cooling<br>(Affordable) |
|----------|--------------------------------|-----------------------------------|--------|------------------------------------------------------------------------------|
| 1        | 100% open                      | 100% open                         | No     | No                                                                           |
| 2        | Closed                         | Closed                            | No     | Yes                                                                          |

#### **10.5.2 Domestic Results**

Based on the results shown in Tables 10-5, 10-6 and 10-7 for the occupied spaces at PGPS, all occupied rooms are considered of high overheating risk through natural ventilated means only without alternative mechanical or tempered cooling. As described in Section 10-2, high noise levels registered on Site represent occupiers' discomfort if natural ventilation is considered at night-time. Thus, mechanical and tempered cooling strategy are recommended to maintain adequate thermal comfort levels and without sleep disturbance.

- Natural ventilation strategies assessed under CIBSE TM59 demonstrate there are rooms under high overheating . risk, as shown in Table 10-5
- Mechanical and tempered cooling were considered as shown in Table 10-7, with all rooms being compliant with CIBSE Guide A

 All the rooms failing CIBSE TM59 criteria via passive means only were incorporated with mechanical cooling (private development) and tempered cooling (affordable) to maintain adequate thermal comfort levels within the rooms during summer, and thus being compliant with CIBSE A overheating criteria for mechanical cooled spaces.

Table 10-5 describes the thermal comfort summary results against Design Summer Year 2020 scenario, assessing natural ventilation only. Table 10-6 describe the thermal comfort summary results against moderate and extreme current and future weather files, assessing natural ventilation only. Table 10-7 describe the thermal comfort summary results against current weather scenario, assessing tempered cooling.

#### Table 10-5 Thermal Comfort summary results – Natural Ventilation Only

|            | Natural Ventilation Only   Weather File DSY1 2020 50th |            |                       |                     |  |
|------------|--------------------------------------------------------|------------|-----------------------|---------------------|--|
| Scenario   | CIBSE Guide                                            | CIBSE TM59 |                       |                     |  |
|            | A Summer<br>temp range<br>(°C)<br>Tmax>=1K)            |            | Criteria b (Bedrooms) | CIBSE Guide<br>TM59 |  |
|            | ±1-2C                                                  |            |                       | Compliance          |  |
| Scenario 1 | 24-28                                                  | FAIL       | FAIL                  | FAIL                |  |
| Scenario 2 | 24-28                                                  | PASS       | PASS                  | PASS                |  |

#### Table 10-6 Thermal Comfort summary results Scenario 1 – Natural Ventilation Only

|                              | Natural Ventilation Only   Moderate to Extreme Current and Future Weather Scenarios |                                    |                       |                                   |  |  |
|------------------------------|-------------------------------------------------------------------------------------|------------------------------------|-----------------------|-----------------------------------|--|--|
|                              | CIBSE Guide                                                                         | CIBSE TM59                         |                       |                                   |  |  |
| Scenario                     | A Summer<br>temp range<br>(°C)                                                      | Criteria a (%Hrs Top-<br>Tmax>=1K) | Criteria b (Bedrooms) | CIBSE Guide<br>TM59<br>Compliance |  |  |
|                              | ±1-2C                                                                               |                                    |                       |                                   |  |  |
| Scenario 1 – DSY 2 2020 50th | 24-28                                                                               | FAIL                               | FAIL                  | FAIL                              |  |  |
| Scenario 1 – DSY 3 2020 50th | 24-28                                                                               | FAIL                               | FAIL                  | FAIL                              |  |  |
| Scenario 1 – DSY 1 2050 50th | 24-28                                                                               | FAIL                               | FAIL                  | FAIL                              |  |  |
| Scenario 1 – DSY 1 2080 50th | 24-28                                                                               | FAIL                               | FAIL                  | FAIL                              |  |  |

Table 10-7 Thermal Comfort summary results Scenario 2 – Mechanical Cooling and Tempered Cooling

|                              | Tempered Cooling   Moderate to Extreme Current and Future Weather Scenarios |                                    |                                   |                          |                                   |
|------------------------------|-----------------------------------------------------------------------------|------------------------------------|-----------------------------------|--------------------------|-----------------------------------|
|                              | CIBSE                                                                       | CIBSE TM59                         |                                   |                          |                                   |
| Space ID                     | Guide<br>A<br>Summe<br>r temp<br>range<br>(°C)                              | e<br>D CIBSE Guide A<br>Compliance | Criteria a (%Hrs<br>Top-Tmax>=1K) | Criteria b<br>(Bedrooms) | CIBSE Guide<br>TM59<br>Compliance |
|                              | ±1-2C                                                                       |                                    |                                   |                          |                                   |
| Scenario 2 - DSY 1 2020 50th | 24-28                                                                       | PASS                               | PASS                              | PASS                     | PASS                              |

#### **10.5.3 Domestic Overheating Compliance Summary**

Following Building Regulation Approved Document O (Overheating) and London Plan Policy SI 4, recommendations for reducing overheating risk and limiting solar gains by passive means were followed.

Scenario 1 assesses natural ventilation to sample dwellings with openable panes being operable at daytime and nighttime without the incorporation of internal or external shading. The operative temperatures registered in summer overpassed CIBSE TM59 criteria a and b under current moderate weather files (DSY 1 2020 50th), more extreme weather scenarios (DSY 2 2020 50th and DSY 3 2020 50th) and under future weather files (DSY 1 2050 50th and DSY 1 2080 50th). Therefore, Scenario 1 failed to comply CIBSE TM59.

Scenario 2 assesses mechanical cooling (private development) and tempered cooling (affordable), with openable panes considered closed during daytime and night-time without the incorporation of internal or external shading. Scenario 2 complies with CIBSE Guide A and CIBSE TM59 overheating criteria and therefore considered as the suitable solution for maintaining adequate comfort temperature during summer period for current and future weather scenarios. Scenario 2 will therefore be implemented.

#### 10.6 Non-domestic active cooling

The active cooling demand of the non-domestic areas were extracted from the BRUKL reports (HVAC Systems Performance) and is summarized in the table below:

#### Table 10-8 Active cooling demand for non-domestic spaces

|                              | Building Cooling Demand (kWh/m <sup>2</sup> ) |                     |  |
|------------------------------|-----------------------------------------------|---------------------|--|
|                              | Landlord Areas                                | Flexible Commercial |  |
| Actual Building (PGPS)       | 1.28                                          | 4.94                |  |
| Notional Building (Baseline) | 1.13                                          | 3.72                |  |

Cooling loads for commercial spaces at PGPS (actual building) are proven to be below the predicted from the notional building (baseline). This is a result of optimised envelope and highly efficient low carbon systems (ASHPs).

The following measures have been applied to reduce the cooling loads from outset:

- 1) The HVAC system design considers optimised SEER and EER for the air-cooled chiller and the heat recovery chiller on-site, being highly energy efficient;
- 2) Recessed glazing for the flexible commercial and landlord areas at ground floor reduce unwanted solar gains;
- Shading from surrounding buildings to cast shadows at ground floor level. 3)

Commercial spaces at PGPS demonstrated optimised cooling demand, following the glazing g-values recommendations as described in Table 6-1 and mechanical systems described in Table 6-5.

#### 11 'Be Seen'

#### **11.1 GLA Be Seen Background and Requirements**

The Mayor of London has declared a climate emergency and has set an ambition for London to be net zero-carbon. This means all new buildings must target net zero carbon. The Mayor's London Plan sets the targets and policies required to achieve this. It includes:

- A net zero-carbon target for all major developments
- A requirement for all major development to 'be seen'. In particular, to monitor and report its energy performance post-construction to ensure that the actual carbon performance is aligned with the Mayor's net zero-carbon target
- A requirement for all referable planning applications to calculate and reduce whole life-cycle carbon emissions to fully capture a development's carbon impact.

To address the energy performance gap between design theory and measured reality, London Plan Policy introduces a 'Be Seen'. It requires monitoring and reporting of the actual operational energy performance for at least five years after construction via the Mayor's 'be seen' monitoring portal. Figure 1 illustrates the 'Be Seen' process and its underpinning responsibilities of the planning applicants, developers, and/or building owners.



Figure 11-1 'Be Seen' process and responsibilities.

#### 11.2 Metering Guidance & Legislation

Effective energy metering in line with the Be Seen requirements will be enabled by the provision of suitable infrastructure within the buildings services systems. The methodology used broadly follows the recommendations set out, for nondomestic buildings, in CIBSE TM39: 2009 Building Energy Metering, BREEAM 2018 NC, as well as the principles set out in NABERS-UK Rules for Metering and Consumptions (May 2022).

The Metering and monitoring of residential areas will consider the same concepts as well as the Heat Network Metering and Billing Regulations (2014) to allow for accurate billing of the apartments connected to the communal ambient loop system.

- · Electricity and Gas "if needed"- approved tariff-based meters, meeting standards set out by OFGEM, are required for energy monitoring and billing purposes.
- Water approved meters for the monitoring and billing of the water consumed are required to meet standards set out by OFWAT.
- Network (Metering and Billing) Regulations 2014.
- Part L1A -2021– Building Regulations specific to domestic buildings.
- CIBSE TM 39 :2009 Building Energy Metering although written for non-domestic buildings, the principles of metering strategies can be adapted for residential buildings.
- BRE Home Quality Mark for Energy and Water
- LETI Climate Emergency Design Guide (pages 98-107)

#### 11.2.2 Non-Domestic Legislation and Guidance

- Electricity and Gas "if needed" approved tariff-based meters, meeting standards set out by the Office of Gas and Electricity Markets (OFGEM) are required for energy monitoring and billing purposes;
- Water approved meters for the monitoring and billing of the water consumed are required to meet standards set out by the Office of Water Services (OFWAT);
- Network (Metering and Billing) Regulations 2014;
- Part L2A -2013 Building Regulations specific to non-domestic buildings;
- CIBSE TM 39:2009 Building Energy Metering
- BREEAM 2018 Ene02 Energy Monitoring;
- CIBSE TM 22 Energy assessment and reporting method;
- The European Measuring Instruments Directive (MID) 2004/22/EC, Measuring Instruments Directive.
- GLA "Be Seen" Energy Monitoring Guidance October 2020
- NABERS-UK Rules for Metering and Consumptions (May 2022).

#### 11.3 Proposed Metering Strategy

The proposed metering strategy of the building by the MEP consultant will include the following:

- Additional meter on the main resident's supply (or residents meter readings need to be collected and collated individually)
- Renewables are sub-metered for generation
- Special uses such as electric vehicle charging is sub-metered
- Individual bi-directional heat meters per dwelling
- Provide a visual energy display device to raise awareness and make users responsible for their energy consumption
- Meter and report landlord areas separately
- Commercial areas metered and reported separately
- Ensure OFGEM compliant meters
- Upload data to publicly accessible platform for five years

Heat Networks – regulations developed by the Department for Business, Energy & Industrial Strategy apply (Heat

Heat Networks – regulations developed by the Department for Business, Energy & Industrial Strategy apply (Heat

#### 11.4 'Be Seen'

Following the 'Be Seen' Energy Monitoring Guidance (October 2020), and as per GLA monitoring requirement stated in Policy SI2 of the London Plan (March 2021), PGPS will demonstrate a commitment to monitor, verify and report on the energy performance post-construction of the scheme.

The methodology used for reporting the energy consumption (kWh/yr) and carbon emissions (tonnes CO<sub>2</sub>/ry) estimates follows the CIBSE TM54 recommendations on regulated and unregulated loads. For commercial areas, advanced dynamic thermal modelling simulations were carried out to estimate the space heating, cooling, ventilation and fan power demand, alongside overall best practice benchmarks based on CIBSE Guide F to estimate the additional energy use for the scheme (e.g. IT loads, lighting and lifts). For residential areas, SAP calculations were carried out to estimate the space heating, cooling, ventilation and fan power demand, alongside overall best practice benchmarks to estimate the additional energy use for the scheme (e.g., appliances and lighting). As the technical design progresses, the energy prediction for the scheme will be estimated based on further dynamic and steady simulation model and energy metering aspirations.

The energy consumption and carbon emissions estimations for the development are described in Table 11-1 and 11-2.

#### 11.5 'Be Seen' Results

Tables 11-1 and 11-2 summarise the Be Seen estimations of the current Stage of the project. It presents the predicted annual energy use from the BRUKL reports (Appendix A), SAP reports (Appendix B) and CIBSE TM54 and F calculations based on energy density benchmark values.

Table 11-1 'Be Seen' summary – Non-Domestic

| Performance Indicator<br>Group | Indicator                         | Unit                                   | Part L2<br>Calculations | CIBSE TM54<br>Calculations |
|--------------------------------|-----------------------------------|----------------------------------------|-------------------------|----------------------------|
|                                | Address                           | Harrow Road, London, W2                |                         |                            |
|                                | Site Plan                         | Included in the planning documentation |                         |                            |
|                                | Planning Use Class                | Flexible Commercial (Class E/F)        |                         |                            |
| Contextual Data                | Anticipated target                | Planning Stage                         | November 2022           |                            |
|                                | dates for each 'Be                | As built                               | -                       |                            |
|                                | Seen                              | In-use                                 | -                       |                            |
|                                | GIA                               | m <sup>2</sup>                         | 2,598                   | 11,838                     |
|                                | Grid electricity                  | kWh/year                               | 86,700                  | 906,000                    |
| Building Energy Use            | Fuel                              | kWh/year                               | 0                       | 0                          |
|                                | Other fuels                       | kWh/year                               | 0                       | 0                          |
|                                | Energy generation                 | kWh/year                               | 0                       | 0                          |
|                                | District heating consumption      | kWh/year                               | 0                       | 0                          |
| Carbon Emissions               | Predicted annual carbon emissions | tCO <sub>2</sub> /year                 | 9.2                     | 122                        |
|                                | Estimated carbon<br>offset amount | £ /year                                | 874.6                   |                            |

Table 11-2 'Be Seen' summary – Domestic

| Performance Indicator<br>Group | Indicator                         | Unit                                   | Part L1 Calculations |
|--------------------------------|-----------------------------------|----------------------------------------|----------------------|
|                                | Address                           | Harrow Road, Londor                    | n, W2                |
|                                | Site Plan                         | Included in the planning documentation |                      |
|                                | Planning Use Class                | Residential (Class C3)                 |                      |
| Contextual Data                | Anticipated target                | Planning Stage                         | November 2022        |
|                                | dates for each 'Be                | As built                               | -                    |
|                                | Seen                              | In-use                                 | -                    |
|                                | GIA                               | 60,465 m <sup>2</sup>                  |                      |
|                                | Number of flats                   | 556                                    |                      |
|                                | Grid electricity                  | kWh/year                               | 1,386,206            |
|                                | Fuel                              | kWh/year                               | 0                    |
| Building Energy Use            | Other fuels                       | kWh/year                               | 0                    |
|                                | Energy generation                 | kWh/year                               | 0                    |
|                                | District heating consumption      | kWh/year                               | 0                    |
| Carbon Emissions               | Predicted annual carbon emissions | tCO <sub>2</sub> /year                 | 153                  |
|                                | Estimated carbon<br>offset amount | £ /year                                | 14,569               |

## **12 Conclusions**

This Energy Strategy report has been compiled by Buro Happold on behalf of Berkeley Homes (Central London) (the Applicant) with respect to PGPS (the Site).

The scheme was assessed following compliance with the London Plan energy hierarchy described as Lean, Clean, and Green. The following measures have been incorporated into the development:

| Lean - Energy efficiency measures                        | Improved energy efficient model, with the following features:                                                                                                                                                                                                                |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                          | <ul> <li>Improved building fabric and air tightness over notional</li> <li>Energy efficiency measures as required to achieve 10% reduction for residential areas, on Part L 2021 (SAP) compliance</li> <li>Highly energy efficient lighting fittings and controls</li> </ul> |
| Clean - Connecting to CHP District<br>Heat Network (DHN) | - Not applicable. Therefore, Be Clean is the same as Be Lean model                                                                                                                                                                                                           |
| Green -Renewable Energy Technology                       | Improved model, with the following features:                                                                                                                                                                                                                                 |
|                                                          | <ul><li>Heat pumps</li><li>PV panels</li></ul>                                                                                                                                                                                                                               |
| Be Seen                                                  | A suitable operational energy assessment was carried out as described within Section 11 in this report                                                                                                                                                                       |

Through the application of the energy hierarchy, the development achieves a carbon dioxide emissions reduction of **67%** below the Building Regulations 2021 TER (ASHP heating system). This is a significant reduction considering the stringent NCM and SAP methodologies (2022) for assessing new schemes under Part L 2021. A total one-off carbon off-set payment of **£470,302** is required to achieve the "Zero Carbon" target.

#### 12.1 Overheating

Dynamic thermal modelling was carried out for predicting the overheating risk for domestic occupied spaces. The assessment demonstrated compliance with CIBSE TM59 and CIBSE A, following mechanical ventilation strategies, with summer operative temperatures falling within the upper and lower acceptable limits for occupant's adequate thermal comfort.

#### 12.2 'Be Seen'

Berkeley Homes (Central London) will demonstrate a commitment to monitor, verify and report on the energy performance post-construction of the scheme.

Advanced dynamic thermal simulation and steady calculations, along with CIBSE Guide F benchmarks were used to estimate the regulated and unregulated energy consumption for the scheme, based on CIBSE TM54 recommendations. The energy demand for PGPS is predicted to be of 898,100 kWh/yr for commercial and common areas and 1,464,303 for residential areas with an energy generation from renewables of 61,057 kWh/yr.

As the technical design progresses, the energy prediction for the scheme will be estimated based on further dynamic simulation model and energy metering aspirations.

## 11 Appendix A – BRUKL Reports

1.
## **BRUKL Output Document**

HM Government

Compliance with England Building Regulations Part L 2021

### **Project name**

### Paddington Green Police Station -Landlord areas - GREEN

### As designed

Date: Tue Nov 15 16:08:38 2022

### Administrative information

### **Building Details**

**Certifier details** 

Address:

### **Certification tool**

Calculation engine: Apache Calculation engine version: 7.0.15 Interface to calculation engine: IES Virtual Environment Interface to calculation engine version: 7.0.15 BRUKL compliance check version: v6.1.b.0

Name: Name Telephone number: Phone Address: Street Address, City, Postcode

Foundation area [m<sup>2</sup>]: 580.5

### The CO<sub>2</sub> emission and primary energy rates of the building must not exceed the targets

| Target CO <sub>2</sub> emission rate (TER), kgCO <sub>2</sub> /m <sup>2</sup> annum   | 2.71       |              |  |
|---------------------------------------------------------------------------------------|------------|--------------|--|
| Building CO <sub>2</sub> emission rate (BER), kgCO <sub>2</sub> /m <sup>2</sup> annum | 2.51       |              |  |
| Target primary energy rate (TPER), kWh/m2annum                                        | 29.29      |              |  |
| Building primary energy rate (BPER), kWh/m2annum                                      | 27.09      |              |  |
| Do the building's emission and primary energy rates exceed the targets?               | BER =< TER | BPER =< TPER |  |

## The performance of the building fabric and fixed building services should achieve reasonable overall standards of energy efficiency

| Fabric element                                           | Ua-Limit | Ua-Calc | Ui-Calc      | First surface with maximum value                                     |
|----------------------------------------------------------|----------|---------|--------------|----------------------------------------------------------------------|
| Walls*                                                   | 0.26     | 0.15    | 0.2          | RF000005:Surf[1]                                                     |
| Floors                                                   | 0.18     | 0.13    | 0.13         | BS000003:Surf[0]                                                     |
| Pitched roofs                                            | 0.16     | -       |              | No Pitched roofs in building                                         |
| Flat roofs                                               | 0.18     |         |              | No Flat roofs in building                                            |
| Windows** and roof windows                               | 1.6      | 1.2     | 1.2          | BL00000A:Surf[0]                                                     |
| Rooflights***                                            | 2.2      | -       | -            | No roof lights in building                                           |
| Personnel doors^                                         | 1.6      | -       | -            | No Personnel doors in building                                       |
| Vehicle access & similar large doors                     | 1.3      | -       | -            | No Vehicle access doors in building                                  |
| High usage entrance doors                                | 3        | -       | -            | No High usage entrance doors in building                             |
| Ua-Limit = Limiting area-weighted average U-values [W/(m | ²K)]     | -       | Ui-Calc = Ca | alculated maximum individual element U-values [W/(m <sup>2</sup> K)] |

 $U_{a-Limit}$  = Limiting area-weighted average U-values [W/(m<sup>2</sup>K)]  $U_{a-Calc}$  = Calculated area-weighted average U-values [W/(m<sup>2</sup>K)]

\* Automatic U-value check by the tool does not apply to curtain walls whose limiting standard is similar to that for windows.

\*\* Display windows and similar glazing are excluded from the U-value check. \*\*\* Values for rooflights refer to the horizontal position.

^ For fire doors, limiting U-value is 1.8 W/m<sup>2</sup>K

N.B.: Neither roof ventilators (inc. smoke vents) nor swimming pool basins are modelled or checked against the limiting standards by the tool.

| Air permeability   | Limiting standard | This building |
|--------------------|-------------------|---------------|
| m³/(h.m²) at 50 Pa | 8                 | 3             |

#### **Building services**

For details on the standard values listed below, system-specific guidance, and additional regulatory requirements, refer to the Approved Documents.

| Whole building lighting automatic monitoring & targeting with alarms for out-of-range values | YES   |
|----------------------------------------------------------------------------------------------|-------|
| Whole building electric power factor achieved by power factor correction                     | >0.95 |

#### 1- Rads

|                                                                                               | Heating efficiency | Cooling efficiency | Radiant efficiency | SFP [W/(I/s)] | HR efficiency |  |  |
|-----------------------------------------------------------------------------------------------|--------------------|--------------------|--------------------|---------------|---------------|--|--|
| This system                                                                                   | 3.07               | 5                  | 0                  | -             | -             |  |  |
| Standard value                                                                                | 2.5*               | N/A                | N/A                | N/A           | N/A           |  |  |
| Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system YES |                    |                    |                    |               |               |  |  |
| * Standard shown is for all types >12 kW output, except absorption and gas engine heat pumps. |                    |                    |                    |               |               |  |  |

#### 2- FCU

|                                                                                               | Heating efficiency | <b>Cooling efficiency</b> | Radiant efficiency | SFP [W/(I/s)] | <b>HR efficiency</b> |  |  |
|-----------------------------------------------------------------------------------------------|--------------------|---------------------------|--------------------|---------------|----------------------|--|--|
| This system                                                                                   | 3.07               | 5                         | 0                  | 1.4           | 0.85                 |  |  |
| Standard value                                                                                | 2.5*               | 4.5**                     | N/A                | 2^            | N/A                  |  |  |
| Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system YES |                    |                           |                    |               |                      |  |  |
| * Standard shown is for all types >12 kW output, except absorption and gas engine heat pumps. |                    |                           |                    |               |                      |  |  |

\*\* Standard shown is for air-cooled chillers >=400 kW. For chillers <400 kW, limiting SEER is 4.

^ Limiting SFP may be increased by the amounts specified in the Approved Documents if the installation includes particular components.

#### 3- Rads + Extract only

|                                                                                               | Heating efficiency | Cooling efficiency | Radiant efficiency | SFP [W/(I/s)] | HR efficience | cy |  |
|-----------------------------------------------------------------------------------------------|--------------------|--------------------|--------------------|---------------|---------------|----|--|
| This system                                                                                   | 3.07               | -                  | 0                  | -             | -             |    |  |
| Standard value                                                                                | 2.5*               | N/A                | N/A                | N/A           | N/A           |    |  |
| Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system YES |                    |                    |                    |               |               |    |  |
| * Standard shown is for all types >12 kW output, except absorption and gas engine heat pumps. |                    |                    |                    |               |               |    |  |

#### "No HWS in project, or hot water is provided by HVAC system"

### Zone-level mechanical ventilation, exhaust, and terminal units

| ID    | System type in the Approved Documents                                                                                               |
|-------|-------------------------------------------------------------------------------------------------------------------------------------|
| Α     | Local supply or extract ventilation units                                                                                           |
| В     | Zonal supply system where the fan is remote from the zone                                                                           |
| С     | Zonal extract system where the fan is remote from the zone                                                                          |
| D     | Zonal balanced supply and extract ventilation system                                                                                |
| Е     | Local balanced supply and extract ventilation units                                                                                 |
| F     | Other local ventilation units                                                                                                       |
| G     | Fan assisted terminal variable air volume units                                                                                     |
| Н     | Fan coil units                                                                                                                      |
| L     | Kitchen extract with the fan remote from the zone and a grease filter                                                               |
| NB: L | imiting SFP may be increased by the amounts specified in the Approved Documents if the installation includes particular components. |

Zone name SFP [W/(I/s)] **HR efficiency** ID of system type A в С D F G н I Ε Standard value 0.3 1.1 0.5 2.3 2 0.5 0.5 0.4 1 Zone Standard Block I PD Management Office 0.2 N/A ---\_ \_ \_ --\_

| Zone name                   |     | SFP [W/(l/s)] |     |     |   | UD officiency |     |     |    |      |              |  |
|-----------------------------|-----|---------------|-----|-----|---|---------------|-----|-----|----|------|--------------|--|
| ID of system type           | Α   | В             | С   | D   | Е | F             | G   | Н   | I. | пке  | нк епісіенсу |  |
| Standard value              | 0.3 | 1.1           | 0.5 | 2.3 | 2 | 0.5           | 0.5 | 0.4 | 1  | Zone | Standard     |  |
| Block K Store               | -   | -             | 0.4 | -   | - | -             | -   | -   | -  | -    | N/A          |  |
| Block K Estate Mgmt Office  | -   | -             | -   | -   | - | -             | -   | 0.2 | -  | -    | N/A          |  |
| Block K Storage_1           | -   | -             | 0.4 | -   | - | -             | -   | -   | -  | -    | N/A          |  |
| Block K PD Entrance         | -   | -             | -   | -   | - | -             | -   | 0.2 | -  | -    | N/A          |  |
| 000 Block K Storage_2       | -   | -             | 0.4 | -   | - | -             | -   | -   | -  | -    | N/A          |  |
| Block K Residential Amenity | -   | -             | -   | -   | - | -             | -   | 0.2 | -  | -    | N/A          |  |
| Block I PD Entrance         | -   | -             | -   | -   | - | -             | -   | 0.2 | -  | -    | N/A          |  |
| Block I Community Space     | -   | -             | 1   | -   | - | -             | -   | 0.2 | -  | -    | N/A          |  |

| General lighting and display lighting | General luminaire | Displa          | y light source                    |
|---------------------------------------|-------------------|-----------------|-----------------------------------|
| Zone name                             | Efficacy [lm/W]   | Efficacy [lm/W] | Power density [W/m <sup>2</sup> ] |
| Standard value                        | 95                | 80              | 0.3                               |
| Block I East Stairwell                | 120               | -               | -                                 |
| Block I PD Management Office          | 120               | -               | -                                 |
| Block I Corridor_2                    | 120               | -               | -                                 |
| Block J West Stairwell                | 120               | -               | -                                 |
| Block J Egress                        | 120               | -               | -                                 |
| Block J Cycle Ent                     | 120               | -               | -                                 |
| Block J Fire Service & SR Ent.        | 120               | 80              | 1.688                             |
| Block J East Stairwell                | 120               | -               | -                                 |
| Block J Corridors_1                   | 120               | -               | -                                 |
| Block J Corridors_2                   | 120               | -               | -                                 |
| Block K Store                         | 120               | -               | -                                 |
| Block K Corridor                      | 120               | -               | -                                 |
| Block I Plant                         | 120               | -               | -                                 |
| Block I Cycle Ent                     | 120               | -               | -                                 |
| Block J Plant (small)                 | 120               | -               | -                                 |
| Block J Plant                         | 120               | -               | -                                 |
| Block K Fire Service & Egress (small) | 120               | -               | -                                 |
| Block K Estate Mgmt Office            | 120               | -               | -                                 |
| Block K Stairwell                     | 120               | -               | -                                 |
| Block K Stairwell from Ground         | 120               | -               | -                                 |
| Block K Plant                         | 120               | -               | -                                 |
| Block I West Stairwell                | 120               | -               | -                                 |
| Block K North Lobby                   | 120               | -               | -                                 |
| Block K Storage_1                     | 120               | -               | -                                 |
| Block K PD Entrance                   | 120               | 80              | 1.688                             |
| B1 Refuge 2                           | 120               | -               | -                                 |
| B1 Refuge 3                           | 120               | -               | -                                 |
| B1 Plant 1                            | 120               | -               | -                                 |
| B1 Stair 1 to Ground                  | 120               | -               | -                                 |
| B1 Refuge 4                           | 120               | -               | -                                 |
| B1 Basement Stair to Ground           | 120               | -               | -                                 |

| General lighting and display lighting | General luminaire | e Display light source |                                   |  |
|---------------------------------------|-------------------|------------------------|-----------------------------------|--|
| Zone name                             | Efficacy [Im/W]   | Efficacy [lm/W]        | Power density [W/m <sup>2</sup> ] |  |
| Standard value                        | 95                | 80                     | 0.3                               |  |
| B1 Basement Stair 1 to B2             | 120               | -                      | -                                 |  |
| B1 Basement Stair 2 to B2             | 120               | -                      | -                                 |  |
| B2 Refuge                             | 120               | -                      | -                                 |  |
| B2 Basement Stair to Ground_2         | 120               | -                      | -                                 |  |
| B2 Basement Stair_1 to Ground         | 120               | -                      | -                                 |  |
| 000 Block K Storage_2                 | 120               | -                      | -                                 |  |
| Block K Residential Amenity           | 120               | -                      | -                                 |  |
| B1 Refuge 1                           | 120               | -                      | -                                 |  |
| Block I Corridor_1                    | 120               | -                      | -                                 |  |
| Block K Cycle Ent                     | 120               | -                      | -                                 |  |
| Block I PD Entrance                   | 120               | 80                     | 1.688                             |  |
| Block I East Egress                   | 120               | -                      | -                                 |  |
| Block I Community Space               | 120               | -                      | -                                 |  |
| Block I West Egress                   | 120               | -                      | -                                 |  |
| Block K Fire Service & Egress         | 120               | -                      | -                                 |  |
| Block K Lobby                         | 120               | -                      | -                                 |  |

## The spaces in the building should have appropriate passive control measures to limit solar gains in summer

| Zone                           | Solar gain limit exceeded? (%) | Internal blinds used? |
|--------------------------------|--------------------------------|-----------------------|
| Block I PD Management Office   | N/A                            | N/A                   |
| Block J Fire Service & SR Ent. | NO (-40.3%)                    | NO                    |
| Block K Estate Mgmt Office     | NO (-40.3%)                    | NO                    |
| Block K PD Entrance            | NO (-43%)                      | NO                    |
| Block K Residential Amenity    | NO (-56.1%)                    | NO                    |
| Block I PD Entrance            | NO (-48.7%)                    | NO                    |
| Block I Community Space        | YES (+36.8%)                   | NO                    |

### Regulation 25A: Consideration of high efficiency alternative energy systems

| Were alternative energy systems considered and analysed as part of the design process? |    |  |  |  |
|----------------------------------------------------------------------------------------|----|--|--|--|
| Is evidence of such assessment available as a separate submission?                     | NO |  |  |  |
| Are any such measures included in the proposed design?                                 | NO |  |  |  |

### Technical Data Sheet (Actual vs. Notional Building)

### **Building Global Parameters**

|                                                       | Actual | Notional | % Are        |
|-------------------------------------------------------|--------|----------|--------------|
| Floor area [m <sup>2</sup> ]                          | 1581.6 | 1581.6   | - 5.         |
| External area [m <sup>2</sup> ]                       | 9724   | 4052.9   | -            |
| Weather                                               | LON    | LON      | 100          |
| Infiltration [m <sup>3</sup> /hm <sup>2</sup> @ 50Pa] | 3      | 3        | -            |
| Average conductance [W/K]                             | 19557  | 914.95   | <del>.</del> |
| Average U-value [W/m <sup>2</sup> K]                  | 2.01   | 0.23     |              |
| Alpha value* [%]                                      | 6.32   | 10       | =:           |

\* Percentage of the building's average heat transfer coefficient which is due to thermal bridging

### **Building Use**

### % Area Building Type

| Retail/Financial and Professional Services                      |
|-----------------------------------------------------------------|
| Restaurants and Cares/Drinking Establishments/Takeaways         |
| Offices and Workshop Businesses                                 |
| General Industrial and Special Industrial Groups                |
| Storage or Distribution                                         |
| Hotels                                                          |
| Residential Institutions: Hospitals and Care Homes              |
| Residential Institutions: Residential Schools                   |
| Residential Institutions: Universities and Colleges             |
| Secure Residential Institutions                                 |
| Residential Spaces                                              |
| Non-residential Institutions: Community/Day Centre              |
| Non-residential Institutions: Libraries, Museums, and Galleries |
| Non-residential Institutions: Education                         |
| Non-residential Institutions: Primary Health Care Building      |
| Non-residential Institutions: Crown and County Courts           |
| General Assembly and Leisure, Night Clubs, and Theatres         |
| Others: Passenger Terminals                                     |
| Others: Emergency Services                                      |
| Others: Miscellaneous 24hr Activities                           |
| Others: Car Parks 24 hrs                                        |
| Others: Stand Alone Utility Block                               |

### Energy Consumption by End Use [kWh/m<sup>2</sup>]

|            | Actual | Notional |
|------------|--------|----------|
| Heating    | 3.12   | 2.77     |
| Cooling    | 1.28   | 1.13     |
| Auxiliary  | 4.37   | 3.73     |
| Lighting   | 4.31   | 5.58     |
| Hot water  | 5.2    | 6.57     |
| Equipment* | 55.36  | 55.36    |
| TOTAL**    | 18.28  | 19.78    |

\* Energy used by equipment does not count towards the total for consumption or calculating emissions.
\*\* Total is net of any electrical energy displaced by CHP generators, if applicable.

### Energy Production by Technology [kWh/m<sup>2</sup>]

|                       | Actual | Notional |
|-----------------------|--------|----------|
| Photovoltaic systems  | 0      | 0        |
| Wind turbines         | 0      | 0        |
| CHP generators        | 0      | 0        |
| Solar thermal systems | 0      | 0        |
| Displaced electricity | 0      | 0        |

### Energy & CO<sub>2</sub> Emissions Summary

|                                               | Actual | Notional |
|-----------------------------------------------|--------|----------|
| Heating + cooling demand [MJ/m <sup>2</sup> ] | 50.59  | 48.87    |
| Primary energy [kWh/m <sup>2</sup> ]          | 27.09  | 29.29    |
| Total emissions [kg/m <sup>2</sup> ]          | 2.51   | 2.71     |

| ŀ   | HVAC Systems Performance   |                   |                   |                    |                    |                   |               |               |                  |                  |
|-----|----------------------------|-------------------|-------------------|--------------------|--------------------|-------------------|---------------|---------------|------------------|------------------|
| Sys | stem Type                  | Heat dem<br>MJ/m2 | Cool dem<br>MJ/m2 | Heat con<br>kWh/m2 | Cool con<br>kWh/m2 | Aux con<br>kWh/m2 | Heat<br>SSEEF | Cool<br>SSEER | Heat gen<br>SEFF | Cool gen<br>SEER |
| [ST | ] Fan coil s               | ystems, [HS       | 6] ASHP, [H       | FT] Electric       | city, [CFT] I      | Electricity       |               |               |                  |                  |
|     | Actual                     | 24.7              | 47.3              | 2.5                | 3.3                | 10.3              | 2.78          | 4.04          | 3.07             | 5                |
|     | Notional                   | 4.1               | 54.3              | 0.4                | 3.3                | 6.3               | 3.01          | 4.63          |                  |                  |
| [ST | ] Central he               | eating using      | g water: rad      | iators, [HS]       | ASHP, [HF          | T] Electrici      | ty, [CFT] El  | ectricity     |                  |                  |
|     | Actual                     | 71.3              | 0                 | 6.9                | 0                  | 1.8               | 2.88          | 0             | 3.07             | 0                |
|     | Notional                   | 47.9              | 0                 | 4.4                | 0                  | 2.2               | 3.01          | 0             |                  |                  |
| [ST | ] Central he               | eating using      | g water: rad      | iators, [HS]       | ASHP, [HF          | T] Electrici      | ty, [CFT] El  | ectricity     |                  |                  |
|     | Actual                     | 67.7              | 0                 | 6.5                | 0                  | 1                 | 2.88          | 0             | 3.07             | 0                |
|     | Notional                   | 78                | 0                 | 7.2                | 0                  | 1                 | 3.01          | 0             |                  |                  |
| [ST | [ST] No Heating or Cooling |                   |                   |                    |                    |                   |               |               |                  |                  |
|     | Actual                     | 0                 | 0                 | 0                  | 0                  | 0                 | 0             | 0             | 0                | 0                |
|     | Notional                   | 0                 | 0                 | 0                  | 0                  | 0                 | 0             | 0             |                  |                  |

| Key to terms      |                                                                                                       |
|-------------------|-------------------------------------------------------------------------------------------------------|
| Heat dem [MJ/m2]  | = Heating energy demand                                                                               |
| Cool dem [MJ/m2]  | = Cooling energy demand                                                                               |
| Heat con [kWh/m2] | = Heating energy consumption                                                                          |
| Cool con [kWh/m2] | = Cooling energy consumption                                                                          |
| Aux con [kWh/m2]  | = Auxiliary energy consumption                                                                        |
| Heat SSEFF        | = Heating system seasonal efficiency (for notional building, value depends on activity glazing class) |
| Cool SSEER        | = Cooling system seasonal energy efficiency ratio                                                     |
| Heat gen SSEFF    | = Heating generator seasonal efficiency                                                               |
| Cool gen SSEER    | = Cooling generator seasonal energy efficiency ratio                                                  |
| ST                | = System type                                                                                         |
| HS                | = Heat source                                                                                         |
| HFT               | = Heating fuel type                                                                                   |
| CFT               | = Cooling fuel type                                                                                   |

HM Government

Compliance with England Building Regulations Part L 2021

### **Project name**

### Paddington Green Police Station -Landlord areas - LEAN

### As designed

Date: Tue Nov 15 15:29:47 2022

### Administrative information

## Building Details

**Certification tool** 

Calculation engine: Apache Calculation engine version: 7.0.15 Interface to calculation engine: IES Virtual Environment Interface to calculation engine version: 7.0.15 BRUKL compliance check version: v6.1.b.0

Certifier details Name: Name Telephone number: Phone

Address: Street Address, City, Postcode

Foundation area [m<sup>2</sup>]: 580.5

### The CO<sub>2</sub> emission and primary energy rates of the building must not exceed the targets

| Target CO <sub>2</sub> emission rate (TER), kgCO <sub>2</sub> /m <sup>2</sup> annum   | 2.71       |              |  |
|---------------------------------------------------------------------------------------|------------|--------------|--|
| Building CO <sub>2</sub> emission rate (BER), kgCO <sub>2</sub> /m <sup>2</sup> annum | 2.69       |              |  |
| Target primary energy rate (TPER), kWh/m?annum                                        | 15.34      |              |  |
| Building primary energy rate (BPER), kWh/m2annum                                      | 14.61      |              |  |
| Do the building's emission and primary energy rates exceed the targets?               | BER =< TER | BPER =< TPER |  |

## The performance of the building fabric and fixed building services should achieve reasonable overall standards of energy efficiency

| Fabric element                                           | Ua-Limit | Ua-Calc | Ui-Calc      | First surface with maximum value                                     |
|----------------------------------------------------------|----------|---------|--------------|----------------------------------------------------------------------|
| Walls*                                                   | 0.26     | 0.15    | 0.2          | RF000005:Surf[1]                                                     |
| Floors                                                   | 0.18     | 0.13    | 0.13         | BS000003:Surf[0]                                                     |
| Pitched roofs                                            | 0.16     | -       |              | No Pitched roofs in building                                         |
| Flat roofs                                               | 0.18     |         |              | No Flat roofs in building                                            |
| Windows** and roof windows                               | 1.6      | 1.2     | 1.2          | BL00000A:Surf[0]                                                     |
| Rooflights***                                            | 2.2      | -       | -            | No roof lights in building                                           |
| Personnel doors^                                         | 1.6      | -       | -            | No Personnel doors in building                                       |
| Vehicle access & similar large doors                     | 1.3      | -       | -            | No Vehicle access doors in building                                  |
| High usage entrance doors                                | 3        | -       | -            | No High usage entrance doors in building                             |
| Ua-Limit = Limiting area-weighted average U-values [W/(m | ²K)]     | -       | Ui-Calc = Ca | alculated maximum individual element U-values [W/(m <sup>2</sup> K)] |

U a-Limit = Limiting area-weighted average U-values [W/(m<sup>2</sup>K)] U a-Calc = Calculated area-weighted average U-values [W/(m<sup>2</sup>K)]

\* Automatic U-value check by the tool does not apply to curtain walls whose limiting standard is similar to that for windows.

\*\* Display windows and similar glazing are excluded from the U-value check. \*\*\* Values for rooflights refer to the horizontal position.

^ For fire doors, limiting U-value is 1.8 W/m<sup>2</sup>K

N.B.: Neither roof ventilators (inc. smoke vents) nor swimming pool basins are modelled or checked against the limiting standards by the tool.

| Air permeability   | Limiting standard | This building |
|--------------------|-------------------|---------------|
| m³/(h.m²) at 50 Pa | 8                 | 3             |

#### **Building services**

For details on the standard values listed below, system-specific guidance, and additional regulatory requirements, refer to the Approved Documents.

| Whole building lighting automatic monitoring & targeting with alarms for out-of-range values |       |  |  |
|----------------------------------------------------------------------------------------------|-------|--|--|
| Whole building electric power factor achieved by power factor correction                     | >0.95 |  |  |

#### 1- Rads

|                                                                                               | Heating efficiency | Cooling efficiency | Radiant efficiency | SFP [W/(I/s)] | HR efficiency |  |
|-----------------------------------------------------------------------------------------------|--------------------|--------------------|--------------------|---------------|---------------|--|
| This system                                                                                   | 2.66               | <b>1</b>           | 0                  | -             | -             |  |
| Standard value                                                                                | 2.5*               | N/A                | N/A                | N/A           | N/A           |  |
| Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system YES |                    |                    |                    |               |               |  |
| * Standard shown is for all types >12 kW output, except absorption and gas engine heat pumps. |                    |                    |                    |               |               |  |

#### 2- FCU

|                                                                                               | Heating efficiency | <b>Cooling efficiency</b> | Radiant efficiency | SFP [W/(I/s)] | HR efficiency |  |
|-----------------------------------------------------------------------------------------------|--------------------|---------------------------|--------------------|---------------|---------------|--|
| This system                                                                                   | 2.66               | 5                         | 0                  | 1.4           | 0.85          |  |
| Standard value                                                                                | 2.5*               | 4.5**                     | N/A                | 2^            | N/A           |  |
| Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system YES |                    |                           |                    |               |               |  |
| * Standard shown is for all types >12 kW output, except absorption and gas engine heat pumps. |                    |                           |                    |               |               |  |
|                                                                                               |                    |                           |                    |               |               |  |

\*\* Standard shown is for air-cooled chillers >=400 kW. For chillers <400 kW, limiting SEER is 4.

^ Limiting SFP may be increased by the amounts specified in the Approved Documents if the installation includes particular components.

#### 3- Rads + Extract only

|                                                                                               | Heating efficiency | Cooling efficiency | Radiant efficiency | SFP [W/(I/s)] | <b>HR efficiency</b> |  |
|-----------------------------------------------------------------------------------------------|--------------------|--------------------|--------------------|---------------|----------------------|--|
| This system                                                                                   | 2.66               | -                  | 0                  | -             | -                    |  |
| Standard value                                                                                | 2.5*               | N/A                | N/A                | N/A           | N/A                  |  |
| Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system YES |                    |                    |                    |               |                      |  |
| * Standard shown is for all types >12 kW output, except absorption and gas engine heat pumps. |                    |                    |                    |               |                      |  |

#### "No HWS in project, or hot water is provided by HVAC system"

### Zone-level mechanical ventilation, exhaust, and terminal units

| ID    | System type in the Approved Documents                                                                                               |
|-------|-------------------------------------------------------------------------------------------------------------------------------------|
| Α     | Local supply or extract ventilation units                                                                                           |
| В     | Zonal supply system where the fan is remote from the zone                                                                           |
| С     | Zonal extract system where the fan is remote from the zone                                                                          |
| D     | Zonal balanced supply and extract ventilation system                                                                                |
| Е     | Local balanced supply and extract ventilation units                                                                                 |
| F     | Other local ventilation units                                                                                                       |
| G     | Fan assisted terminal variable air volume units                                                                                     |
| Н     | Fan coil units                                                                                                                      |
| L     | Kitchen extract with the fan remote from the zone and a grease filter                                                               |
| NB: L | imiting SFP may be increased by the amounts specified in the Approved Documents if the installation includes particular components. |

| Zone name                    |     | SFP [W/(I/s)] |     |     |   |     |     |     |   |      |          |
|------------------------------|-----|---------------|-----|-----|---|-----|-----|-----|---|------|----------|
| ID of system type            | A   | в             | С   | D   | Е | F   | G   | н   | I | пке  | inciency |
| Standard value               | 0.3 | 1.1           | 0.5 | 2.3 | 2 | 0.5 | 0.5 | 0.4 | 1 | Zone | Standard |
| Block I PD Management Office | -   | -             | -   | -   | - | -   | -   | 0.2 | - | -    | N/A      |

| Zone name                   |     | SFP [W/(I/s)] |     |     |   |     |     |     |    |      |          |
|-----------------------------|-----|---------------|-----|-----|---|-----|-----|-----|----|------|----------|
| ID of system type           | Α   | В             | С   | D   | Е | F   | G   | Н   | I. | пке  | mciency  |
| Standard value              | 0.3 | 1.1           | 0.5 | 2.3 | 2 | 0.5 | 0.5 | 0.4 | 1  | Zone | Standard |
| Block K Store               | -   | -             | 0.4 | -   | - | -   | -   | -   | -  | -    | N/A      |
| Block K Estate Mgmt Office  | -   | -             | -   | -   | - | -   | -   | 0.2 | -  | -    | N/A      |
| Block K Storage_1           | -   | -             | 0.4 | -   | - | -   | -   | -   | -  | -    | N/A      |
| Block K PD Entrance         | -   | -             | -   | -   | - | -   | -   | 0.2 | -  | -    | N/A      |
| 000 Block K Storage_2       | -   | -             | 0.4 | -   | - | -   | -   | -   | -  | -    | N/A      |
| Block K Residential Amenity | -   | -             | -   | -   | - | -   | -   | 0.2 | -  | -    | N/A      |
| Block I PD Entrance         | -   | -             | -   | -   | - | -   | -   | 0.2 | -  | -    | N/A      |
| Block I Community Space     | -   | -             | 1   | -   | - | -   | -   | 0.2 | -  | -    | N/A      |

| General lighting and display lighting | General luminaire | Displa          | y light source                    |
|---------------------------------------|-------------------|-----------------|-----------------------------------|
| Zone name                             | Efficacy [lm/W]   | Efficacy [lm/W] | Power density [W/m <sup>2</sup> ] |
| Standard value                        | 95                | 80              | 0.3                               |
| Block I East Stairwell                | 120               | -               | -                                 |
| Block I PD Management Office          | 120               | -               | -                                 |
| Block I Corridor_2                    | 120               | -               | -                                 |
| Block J West Stairwell                | 120               | -               | -                                 |
| Block J Egress                        | 120               | -               | -                                 |
| Block J Cycle Ent                     | 120               | -               | -                                 |
| Block J Fire Service & SR Ent.        | 120               | 80              | 1.688                             |
| Block J East Stairwell                | 120               | -               | -                                 |
| Block J Corridors_1                   | 120               | -               | -                                 |
| Block J Corridors_2                   | 120               | -               | -                                 |
| Block K Store                         | 120               | -               | -                                 |
| Block K Corridor                      | 120               | -               | -                                 |
| Block I Plant                         | 120               | -               | -                                 |
| Block I Cycle Ent                     | 120               | -               | -                                 |
| Block J Plant (small)                 | 120               | -               | -                                 |
| Block J Plant                         | 120               | -               | -                                 |
| Block K Fire Service & Egress (small) | 120               | -               | -                                 |
| Block K Estate Mgmt Office            | 120               | -               | -                                 |
| Block K Stairwell                     | 120               | -               | -                                 |
| Block K Stairwell from Ground         | 120               | -               | -                                 |
| Block K Plant                         | 120               | -               | -                                 |
| Block I West Stairwell                | 120               | -               | -                                 |
| Block K North Lobby                   | 120               | -               | -                                 |
| Block K Storage_1                     | 120               | -               | -                                 |
| Block K PD Entrance                   | 120               | 80              | 1.688                             |
| B1 Refuge 2                           | 120               | -               | -                                 |
| B1 Refuge 3                           | 120               | -               | -                                 |
| B1 Plant 1                            | 120               | -               | -                                 |
| B1 Stair 1 to Ground                  | 120               | -               | -                                 |
| B1 Refuge 4                           | 120               | -               | -                                 |
| B1 Basement Stair to Ground           | 120               | -               | -                                 |

| General lighting and display lighting | General luminaire | Displa          | y light source                    |
|---------------------------------------|-------------------|-----------------|-----------------------------------|
| Zone name                             | Efficacy [Im/W]   | Efficacy [lm/W] | Power density [W/m <sup>2</sup> ] |
| Standard value                        | 95                | 80              | 0.3                               |
| B1 Basement Stair 1 to B2             | 120               | -               | -                                 |
| B1 Basement Stair 2 to B2             | 120               | -               | -                                 |
| B2 Refuge                             | 120               | -               | -                                 |
| B2 Basement Stair to Ground_2         | 120               | -               | -                                 |
| B2 Basement Stair_1 to Ground         | 120               | -               | -                                 |
| 000 Block K Storage_2                 | 120               | -               | -                                 |
| Block K Residential Amenity           | 120               | -               | -                                 |
| B1 Refuge 1                           | 120               | -               | -                                 |
| Block I Corridor_1                    | 120               | -               | -                                 |
| Block K Cycle Ent                     | 120               | -               | -                                 |
| Block I PD Entrance                   | 120               | 80              | 1.688                             |
| Block I East Egress                   | 120               | -               | -                                 |
| Block I Community Space               | 120               | -               | -                                 |
| Block I West Egress                   | 120               | -               | -                                 |
| Block K Fire Service & Egress         | 120               | -               | -                                 |
| Block K Lobby                         | 120               | -               | -                                 |

## The spaces in the building should have appropriate passive control measures to limit solar gains in summer

| Zone                           | Solar gain limit exceeded? (%) | Internal blinds used? |
|--------------------------------|--------------------------------|-----------------------|
| Block I PD Management Office   | N/A                            | N/A                   |
| Block J Fire Service & SR Ent. | NO (-40.3%)                    | NO                    |
| Block K Estate Mgmt Office     | NO (-40.3%)                    | NO                    |
| Block K PD Entrance            | NO (-43%)                      | NO                    |
| Block K Residential Amenity    | NO (-56.1%)                    | NO                    |
| Block I PD Entrance            | NO (-48.7%)                    | NO                    |
| Block I Community Space        | YES (+36.8%)                   | NO                    |

### Regulation 25A: Consideration of high efficiency alternative energy systems

| Were alternative energy systems considered and analysed as part of the design process? | NO |
|----------------------------------------------------------------------------------------|----|
| Is evidence of such assessment available as a separate submission?                     | NO |
| Are any such measures included in the proposed design?                                 | NO |

### Technical Data Sheet (Actual vs. Notional Building)

### **Building Global Parameters**

|                                                       | Actual | Notional | % Are        |
|-------------------------------------------------------|--------|----------|--------------|
| Floor area [m <sup>2</sup> ]                          | 1581.6 | 1581.6   | - 5.         |
| External area [m <sup>2</sup> ]                       | 9724   | 4052.9   | -            |
| Weather                                               | LON    | LON      | 100          |
| Infiltration [m <sup>3</sup> /hm <sup>2</sup> @ 50Pa] | 3      | 3        | -            |
| Average conductance [W/K]                             | 19557  | 914.95   | <del>.</del> |
| Average U-value [W/m <sup>2</sup> K]                  | 2.01   | 0.23     |              |
| Alpha value* [%]                                      | 6.32   | 10       | =:           |

\* Percentage of the building's average heat transfer coefficient which is due to thermal bridging

### **Building Use**

### % Area Building Type

| Retail/Financial and Professional Services                      |
|-----------------------------------------------------------------|
| Restaurants and Cares/Drinking Establishments/Takeaways         |
| Offices and Workshop Businesses                                 |
| General Industrial and Special Industrial Groups                |
| Storage or Distribution                                         |
| Hotels                                                          |
| Residential Institutions: Hospitals and Care Homes              |
| Residential Institutions: Residential Schools                   |
| Residential Institutions: Universities and Colleges             |
| Secure Residential Institutions                                 |
| Residential Spaces                                              |
| Non-residential Institutions: Community/Day Centre              |
| Non-residential Institutions: Libraries, Museums, and Galleries |
| Non-residential Institutions: Education                         |
| Non-residential Institutions: Primary Health Care Building      |
| Non-residential Institutions: Crown and County Courts           |
| General Assembly and Leisure, Night Clubs, and Theatres         |
| Others: Passenger Terminals                                     |
| Others: Emergency Services                                      |
| Others: Miscellaneous 24hr Activities                           |
| Others: Car Parks 24 hrs                                        |
| Others: Stand Alone Utility Block                               |

### Energy Consumption by End Use [kWh/m<sup>2</sup>]

|            | Actual | Notional |
|------------|--------|----------|
| Heating    | 3.6    | 2.77     |
| Cooling    | 1.28   | 1.13     |
| Auxiliary  | 4.37   | 3.73     |
| Lighting   | 4.31   | 5.58     |
| Hot water  | 6      | 6.57     |
| Equipment* | 55.36  | 55.36    |
| TOTAL**    | 19.56  | 19.78    |

\* Energy used by equipment does not count towards the total for consumption or calculating emissions.
\*\* Total is net of any electrical energy displaced by CHP generators, if applicable.

### Energy Production by Technology [kWh/m<sup>2</sup>]

|                       | Actual | Notional |
|-----------------------|--------|----------|
| Photovoltaic systems  | 0      | 0        |
| Wind turbines         | 0      | 0        |
| CHP generators        | 0      | 0        |
| Solar thermal systems | 0      | 0        |
| Displaced electricity | 0      | 0        |

### Energy & CO<sub>2</sub> Emissions Summary

|                                               | Actual | Notional |
|-----------------------------------------------|--------|----------|
| Heating + cooling demand [MJ/m <sup>2</sup> ] | 50.59  | 48.87    |
| Primary energy [kWh/m <sup>2</sup> ]          | 14.61  | 15.34    |
| Total emissions [kg/m <sup>2</sup> ]          | 2.69   | 2.71     |

| ŀ           | HVAC Systems Performance                                               |                   |                   |                    |                    |                   |               |               |                  |                  |
|-------------|------------------------------------------------------------------------|-------------------|-------------------|--------------------|--------------------|-------------------|---------------|---------------|------------------|------------------|
| System Type |                                                                        | Heat dem<br>MJ/m2 | Cool dem<br>MJ/m2 | Heat con<br>kWh/m2 | Cool con<br>kWh/m2 | Aux con<br>kWh/m2 | Heat<br>SSEEF | Cool<br>SSEER | Heat gen<br>SEFF | Cool gen<br>SEER |
| [ST         | [ST] Fan coil systems, [HS] ASHP, [HFT] Electricity, [CFT] Electricity |                   |                   |                    |                    |                   |               |               |                  |                  |
|             | Actual                                                                 | 24.7              | 47.3              | 2.8                | 3.3                | 10.3              | 2.41          | 4.04          | 2.66             | 5                |
|             | Notional                                                               | 4.1               | 54.3              | 0.4                | 3.3                | 6.3               | 3.01          | 4.63          |                  |                  |
| [ST         | ] Central he                                                           | eating using      | y water: rad      | iators, [HS]       | ASHP, [HF          | T] Electrici      | ty, [CFT] El  | ectricity     |                  |                  |
|             | Actual                                                                 | 71.3              | 0                 | 7.9                | 0                  | 1.8               | 2.5           | 0             | 2.66             | 0                |
|             | Notional                                                               | 47.9              | 0                 | 4.4                | 0                  | 2.2               | 3.01          | 0             |                  |                  |
| [ST         | ] Central he                                                           | eating using      | y water: rad      | iators, [HS]       | ASHP, [HF          | T] Electrici      | ty, [CFT] El  | ectricity     |                  |                  |
|             | Actual                                                                 | 67.7              | 0                 | 7.5                | 0                  | 1                 | 2.5           | 0             | 2.66             | 0                |
|             | Notional                                                               | 78                | 0                 | 7.2                | 0                  | 1                 | 3.01          | 0             |                  |                  |
| [ST         | ] No Heatin                                                            | g or Coolin       | g                 |                    |                    |                   |               |               |                  |                  |
|             | Actual                                                                 | 0                 | 0                 | 0                  | 0                  | 0                 | 0             | 0             | 0                | 0                |
|             | Notional                                                               | 0                 | 0                 | 0                  | 0                  | 0                 | 0             | 0             |                  |                  |

| = Heating energy demand                                                                               |
|-------------------------------------------------------------------------------------------------------|
| = Cooling energy demand                                                                               |
| = Heating energy consumption                                                                          |
| = Cooling energy consumption                                                                          |
| = Auxiliary energy consumption                                                                        |
| = Heating system seasonal efficiency (for notional building, value depends on activity glazing class) |
| = Cooling system seasonal energy efficiency ratio                                                     |
| = Heating generator seasonal efficiency                                                               |
| = Cooling generator seasonal energy efficiency ratio                                                  |
| = System type                                                                                         |
| = Heat source                                                                                         |
| = Heating fuel type                                                                                   |
| = Cooling fuel type                                                                                   |
|                                                                                                       |

## **BRUKL Output Document**

HM Government

Compliance with England Building Regulations Part L 2021

### **Project name**

# Paddington Green Police Station - Retails

As designed

Date: Tue Nov 15 15:53:53 2022

### Administrative information

Building Details Address:

**Certifier details** 

#### **Certification tool**

Calculation engine: Apache Calculation engine version: 7.0.15 Interface to calculation engine: IES Virtual Environment Interface to calculation engine version: 7.0.15 BRUKL compliance check version: v6.1.b.0

Name: Name Telephone number: Phone Address: Street Address, City, Postcode

Foundation area [m<sup>2</sup>]: 1047.06

### The CO<sub>2</sub> emission and primary energy rates of the building must not exceed the targets

| Target CO <sub>2</sub> emission rate (TER), kgCO <sub>2</sub> /m <sup>2</sup> annum   | 5.68       |              |  |
|---------------------------------------------------------------------------------------|------------|--------------|--|
| Building CO <sub>2</sub> emission rate (BER), kgCO <sub>2</sub> /m <sup>2</sup> annum | 5.16       |              |  |
| Target primary energy rate (TPER), kWh/m2annum                                        | 61.98      |              |  |
| Building primary energy rate (BPER), kWh/m <sup>2</sup> annum                         | 56.18      |              |  |
| Do the building's emission and primary energy rates exceed the targets?               | BER =< TER | BPER =< TPER |  |

## The performance of the building fabric and fixed building services should achieve reasonable overall standards of energy efficiency

| Fabric element                                           | Ua-Limit | Ua-Calc | Ui-Calc      | First surface with maximum value                        |
|----------------------------------------------------------|----------|---------|--------------|---------------------------------------------------------|
| Walls*                                                   | 0.26     | 0.13    | 0.13         | BL00001E:Surf[1]                                        |
| Floors                                                   | 0.18     | 0.13    | 0.13         | BL0000A3:Surf[16]                                       |
| Pitched roofs                                            | 0.16     | -       | -            | No Pitched roofs in building                            |
| Flat roofs                                               | 0.18     |         |              | No Flat roofs in building                               |
| Windows** and roof windows                               | 1.6      | 1.2     | 1.2          | BL00001E:Surf[0]                                        |
| Rooflights***                                            | 2.2      | -       | - 1          | No roof lights in building                              |
| Personnel doors^                                         | 1.6      | -       | -            | No Personnel doors in building                          |
| Vehicle access & similar large doors                     | 1.3      | -       | -            | No Vehicle access doors in building                     |
| High usage entrance doors                                | 3        | -       | -            | No High usage entrance doors in building                |
| Ua-Limit = Limiting area-weighted average U-values [W/(m | ²K)]     |         | Ui-Calc = Ca | alculated maximum individual element U-values [W/(m²K)] |

U<sub>a-calc</sub> = Calculated area-weighted average U-values [W/(m<sup>2</sup>K)]

\* Automatic U-value check by the tool does not apply to curtain walls whose limiting standard is similar to that for windows.

\*\* Display windows and similar glazing are excluded from the U-value check. \*\*\* Values for rooflights refer to the horizontal position.

^ For fire doors, limiting U-value is 1.8 W/m<sup>2</sup>K

N.B.: Neither roof ventilators (inc. smoke vents) nor swimming pool basins are modelled or checked against the limiting standards by the tool.

| Air permeability   | Limiting standard | This building |
|--------------------|-------------------|---------------|
| m³/(h.m²) at 50 Pa | 8                 | 3             |

#### **Building services**

For details on the standard values listed below, system-specific guidance, and additional regulatory requirements, refer to the Approved Documents.

| Whole building lighting automatic monitoring & targeting with alarms for out-of-range values | YES   |
|----------------------------------------------------------------------------------------------|-------|
| Whole building electric power factor achieved by power factor correction                     | >0.95 |

1- FCU

|                                                                                                                                        | Heating efficiency | Cooling efficiency | Radiant efficiency | SFP [W/(I/s)] | HR efficiency |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|--------------------|---------------|---------------|--|--|--|--|
| This system                                                                                                                            | 3.07               | 5                  | 0                  | 1.4           | 0.85          |  |  |  |  |
| Standard value                                                                                                                         | 2.5*               | 4.5**              | N/A                | 2^            | N/A           |  |  |  |  |
| Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system YES                                          |                    |                    |                    |               |               |  |  |  |  |
| * Standard shown is for all types >12 kW output, except absorption and gas engine heat pumps.                                          |                    |                    |                    |               |               |  |  |  |  |
| ** Standard shown is for air-cooled chillers >=400 kW. For chillers <400 kW, limiting SEER is 4.                                       |                    |                    |                    |               |               |  |  |  |  |
| ^ Limiting SFP may be increased by the amounts specified in the Approved Documents if the installation includes particular components. |                    |                    |                    |               |               |  |  |  |  |

"No HWS in project, or hot water is provided by HVAC system"

### Zone-level mechanical ventilation, exhaust, and terminal units

| ID    | System type in the Approved Documents                                                                                                |
|-------|--------------------------------------------------------------------------------------------------------------------------------------|
| Α     | Local supply or extract ventilation units                                                                                            |
| В     | Zonal supply system where the fan is remote from the zone                                                                            |
| С     | Zonal extract system where the fan is remote from the zone                                                                           |
| D     | Zonal balanced supply and extract ventilation system                                                                                 |
| E     | Local balanced supply and extract ventilation units                                                                                  |
| F     | Other local ventilation units                                                                                                        |
| G     | Fan assisted terminal variable air volume units                                                                                      |
| Н     | Fan coil units                                                                                                                       |
| 1     | Kitchen extract with the fan remote from the zone and a grease filter                                                                |
| NB: I | Limiting SFP may be increased by the amounts specified in the Approved Documents if the installation includes particular components. |

| Zone name                           |              | SFP [W/(I/s)] |     |            |                |     |     |     |   | UD officiences |          |
|-------------------------------------|--------------|---------------|-----|------------|----------------|-----|-----|-----|---|----------------|----------|
| ID of system type                   | Α            | В             | С   | D          | E              | F   | G   | Н   | I | HR eniciency   |          |
| Standard value                      | 0.3          | 1.1           | 0.5 | 2.3        | 2              | 0.5 | 0.5 | 0.4 | 1 | Zone           | Standard |
| Block   Flexible Commercial Unit 09 | -            | -             | -   | - 1        | . <del></del>  | -   | -   | 0.2 | - | -              | N/A      |
| Block J Flexible Commercial Unit 07 | -            | -             | -   | - 1        | -              | -   | -   | 0.2 | - | -              | N/A      |
| Block J Flexible Commercial Unit 05 | -            | -             | -   | -          | -              | -   | -   | 0.2 | - | -              | N/A      |
| Block K Flexible Commercial Unit 01 |              | -             | -   | -          |                | -   | -   | 0.2 | - | -              | N/A      |
| Block K Flexible Commercial Unit 2  | -            | -             | -   | -          |                | -   | -   | 0.2 | - | L.             | N/A      |
| Block I Flexible Commercial Unit 08 | =            | -             | -   | -          | ) <del>.</del> | -   | -   | 0.2 | - | -              | N/A      |
| Block J Flexible Commercial Unit 06 | -            | .=0           | -   | <b>H</b> ( | -              | -   | -   | 0.2 | - | -              | N/A      |
| Block K Flexible Commercial Unit 03 | <del>.</del> | -             |     | - 1        |                | -   | -   | 0.2 | - | -              | N/A      |
| Block K Flexible Commercial Unit 04 | =            | -             | -   |            | ) <del></del>  | -   |     | 0.2 | - |                | N/A      |

| General lighting and display lighting | General luminaire | Displa          | y light source                    |
|---------------------------------------|-------------------|-----------------|-----------------------------------|
| Zone name                             | Efficacy [Im/W]   | Efficacy [lm/W] | Power density [W/m <sup>2</sup> ] |
| Standard value                        | 95                | 80              | 0.3                               |
| Block I Flexible Commercial Unit 09   | 120               | 80              | 1.875                             |

| General lighting and display lighting | General luminaire | Displa          | y light source                    |  |
|---------------------------------------|-------------------|-----------------|-----------------------------------|--|
| Zone name                             | Efficacy [Im/W]   | Efficacy [Im/W] | Power density [W/m <sup>2</sup> ] |  |
| Standard value                        | 95                | 80              | 0.3                               |  |
| Block J Flexible Commercial Unit 07   | 120               | 80              | 1.875                             |  |
| Block J Flexible Commercial Unit 05   | 120               | 80              | 1.875                             |  |
| Block K Flexible Commercial Unit 01   | 120               | 80              | 1.875                             |  |
| Block K Flexible Commercial Unit 2    | 120               | 80              | 1.875                             |  |
| Block I Flexible Commercial Unit 08   | 120               | 80              | 1.875                             |  |
| Block J Flexible Commercial Unit 06   | 120               | 80              | 1.875                             |  |
| Block K Flexible Commercial Unit 03   | 120               | 80              | 1.875                             |  |
| Block K Flexible Commercial Unit 04   | 120               | 80              | 1.875                             |  |

## The spaces in the building should have appropriate passive control measures to limit solar gains in summer

| Zone                                | Solar gain limit exceeded? (%) | Internal blinds used? |
|-------------------------------------|--------------------------------|-----------------------|
| Block I Flexible Commercial Unit 09 | YES (+20.4%)                   | NO                    |
| Block J Flexible Commercial Unit 07 | NO (-49.6%)                    | NO                    |
| Block J Flexible Commercial Unit 05 | NO (-12.2%)                    | NO                    |
| Block K Flexible Commercial Unit 01 | NO (-1.5%)                     | NO                    |
| Block K Flexible Commercial Unit 2  | YES (+39.5%)                   | NO                    |
| Block   Flexible Commercial Unit 08 | NO (-44.7%)                    | NO                    |
| Block J Flexible Commercial Unit 06 | YES (+15.8%)                   | NO                    |
| Block K Flexible Commercial Unit 03 | YES (+48%)                     | NO                    |
| Block K Flexible Commercial Unit 04 | NO (-34.7%)                    | NO                    |

### Regulation 25A: Consideration of high efficiency alternative energy systems

| Were alternative energy systems considered and analysed as part of the design process? | NO |
|----------------------------------------------------------------------------------------|----|
| Is evidence of such assessment available as a separate submission?                     | NO |
| Are any such measures included in the proposed design?                                 | NO |

### Technical Data Sheet (Actual vs. Notional Building)

### **Building Global Parameters**

|                                                       | Actual | Notional | % AI    |
|-------------------------------------------------------|--------|----------|---------|
| Floor area [m <sup>2</sup> ]                          | 1016.5 | 1016.5   | 100     |
| External area [m <sup>2</sup> ]                       | 648.2  | 1690.8   | -       |
| Weather                                               | LON    | LON      | 70.<br> |
| Infiltration [m <sup>3</sup> /hm <sup>2</sup> @ 50Pa] | 3      | 3        | _       |
| Average conductance [W/K]                             | 731.6  | 517.92   | 7.<br>  |
| Average U-value [W/m <sup>2</sup> K]                  | 1.13   | 0.31     | -       |
| Alpha value* [%]                                      | 18.64  | 10       | =       |

\* Percentage of the building's average heat transfer coefficient which is due to thermal bridging

### Energy Consumption by End Use [kWh/m<sup>2</sup>]

|            | Actual | Notional |
|------------|--------|----------|
| Heating    | 3.64   | 1.57     |
| Cooling    | 4.94   | 3.72     |
| Auxiliary  | 13.93  | 12.45    |
| Lighting   | 14.97  | 23.73    |
| Hot water  | 0.58   | 0.56     |
| Equipment* | 20.26  | 20.26    |
| TOTAL**    | 38.06  | 42.03    |

\* Energy used by equipment does not count towards the total for consumption or calculating emissions.
\*\* Total is net of any electrical energy displaced by CHP generators, if applicable.

### Energy Production by Technology [kWh/m<sup>2</sup>]

|                       | Actual | Notional |
|-----------------------|--------|----------|
| Photovoltaic systems  | 0      | 0        |
| Wind turbines         | 0      | 0        |
| CHP generators        | 0      | 0        |
| Solar thermal systems | 0      | 0        |
| Displaced electricity | 0      | 0        |

### Energy & CO<sub>2</sub> Emissions Summary

|                                               | Actual | Notional |
|-----------------------------------------------|--------|----------|
| Heating + cooling demand [MJ/m <sup>2</sup> ] | 108.29 | 79.01    |
| Primary energy [kWh/m <sup>2</sup> ]          | 56.18  | 61.98    |
| Total emissions [kg/m <sup>2</sup> ]          | 5.16   | 5.68     |

### **Building Use**

| ea | Building Type                                                   |
|----|-----------------------------------------------------------------|
|    | Retail/Financial and Professional Services                      |
|    | Restaurants and Cafes/Drinking Establishments/Takeaways         |
|    | Offices and Workshop Businesses                                 |
|    | General Industrial and Special Industrial Groups                |
|    | Storage or Distribution                                         |
|    | Hotels                                                          |
|    | Residential Institutions: Hospitals and Care Homes              |
|    | Residential Institutions: Residential Schools                   |
|    | Residential Institutions: Universities and Colleges             |
|    | Secure Residential Institutions                                 |
|    | Residential Spaces                                              |
|    | Non-residential Institutions: Community/Day Centre              |
|    | Non-residential Institutions: Libraries, Museums, and Galleries |
|    | Non-residential Institutions: Education                         |
|    | Non-residential Institutions: Primary Health Care Building      |
|    | Non-residential Institutions: Crown and County Courts           |
|    | General Assembly and Leisure, Night Clubs, and Theatres         |
|    | Others: Passenger Terminals                                     |
|    | Others: Emergency Services                                      |
|    | Others: Miscellaneous 24hr Activities                           |
|    | Others: Car Parks 24 hrs                                        |
|    | Others: Stand Alone Utility Block                               |

| ŀ                          | HVAC Systems Performance |                   |                   |                    |                    |                   |               |               |                  |                  |
|----------------------------|--------------------------|-------------------|-------------------|--------------------|--------------------|-------------------|---------------|---------------|------------------|------------------|
| Sys                        | stem Type                | Heat dem<br>MJ/m2 | Cool dem<br>MJ/m2 | Heat con<br>kWh/m2 | Cool con<br>kWh/m2 | Aux con<br>kWh/m2 | Heat<br>SSEEF | Cool<br>SSEER | Heat gen<br>SEFF | Cool gen<br>SEER |
| [ST                        | ] Fan coil s             | ystems, [HS       | 6] ASHP, [H       | FT] Electric       | city, [CFT] I      | Electricity       |               |               |                  |                  |
|                            | Actual                   | 36.4              | 71.8              | 3.6                | 4.9                | 13.9              | 2.78          | 4.04          | 3.07             | 5                |
|                            | Notional                 | 17.1              | 62                | 1.6                | 3.7                | 12.5              | 3.01          | 4.63          |                  |                  |
| [ST] No Heating or Cooling |                          |                   |                   |                    |                    |                   |               |               |                  |                  |
|                            | Actual                   | 0                 | 0                 | 0                  | 0                  | 0                 | 0             | 0             | 0                | 0                |
|                            | Notional                 | 0                 | 0                 | 0                  | 0                  | 0                 | 0             | 0             |                  |                  |

### Key to terms

| Heat dem [MJ/m2]  | = Heating energy demand                                                                               |
|-------------------|-------------------------------------------------------------------------------------------------------|
| Cool dem [MJ/m2]  | = Cooling energy demand                                                                               |
| Heat con [kWh/m2] | = Heating energy consumption                                                                          |
| Cool con [kWh/m2] | = Cooling energy consumption                                                                          |
| Aux con [kWh/m2]  | = Auxiliary energy consumption                                                                        |
| Heat SSEFF        | = Heating system seasonal efficiency (for notional building, value depends on activity glazing class) |
| Cool SSEER        | = Cooling system seasonal energy efficiency ratio                                                     |
| Heat gen SSEFF    | = Heating generator seasonal efficiency                                                               |
| Cool gen SSEER    | = Cooling generator seasonal energy efficiency ratio                                                  |
| ST                | = System type                                                                                         |
| HS                | = Heat source                                                                                         |
| HFT               | = Heating fuel type                                                                                   |
| CFT               | = Cooling fuel type                                                                                   |

= Cooling fuel type

## **BRUKL Output Document**

HM Government

As designed

Compliance with England Building Regulations Part L 2021

### **Project name**

### Paddington Green Police Station - Retails - LEAN

Date: Tue Nov 15 15:37:51 2022

### Administrative information

Building Details Address:

**Certifier details** 

Telephone number: Phone

Address: Street Address, City, Postcode

Name: Name

### **Certification tool**

Calculation engine: Apache Calculation engine version: 7.0.15 Interface to calculation engine: IES Virtual Environment Interface to calculation engine version: 7.0.15 BRUKL compliance check version: v6.1.b.0

Foundation area [m<sup>2</sup>]: 1047.06

### The CO<sub>2</sub> emission and primary energy rates of the building must not exceed the targets

| Target CO <sub>2</sub> emission rate (TER), kgCO <sub>2</sub> /m <sup>2</sup> annum   | 5.68                     |  |  |
|---------------------------------------------------------------------------------------|--------------------------|--|--|
| Building CO <sub>2</sub> emission rate (BER), kgCO <sub>2</sub> /m <sup>2</sup> annum | 5.26                     |  |  |
| Target primary energy rate (TPER), kWh/m?annum                                        | 58.72                    |  |  |
| Building primary energy rate (BPER), kWh/m2annum                                      | 49.73                    |  |  |
| Do the building's emission and primary energy rates exceed the targets?               | s? BER =< TER BPER =< TP |  |  |

## The performance of the building fabric and fixed building services should achieve reasonable overall standards of energy efficiency

| Fabric element                                           | Ua-Limit | Ua-Calc | Ui-Calc      | First surface with maximum value                                     |
|----------------------------------------------------------|----------|---------|--------------|----------------------------------------------------------------------|
| Walls*                                                   | 0.26     | 0.13    | 0.13         | BL00001E:Surf[1]                                                     |
| Floors                                                   | 0.18     | 0.13    | 0.13         | BL0000A3:Surf[16]                                                    |
| Pitched roofs                                            | 0.16     | -       |              | No Pitched roofs in building                                         |
| Flat roofs                                               | 0.18     |         |              | No Flat roofs in building                                            |
| Windows** and roof windows                               | 1.6      | 1.2     | 1.2          | BL00001E:Surf[0]                                                     |
| Rooflights***                                            | 2.2      | -       | -            | No roof lights in building                                           |
| Personnel doors^                                         | 1.6      | -       | -            | No Personnel doors in building                                       |
| Vehicle access & similar large doors                     | 1.3      | -       | -            | No Vehicle access doors in building                                  |
| High usage entrance doors                                | 3        | -       | -            | No High usage entrance doors in building                             |
| Ua-Limit = Limiting area-weighted average U-values [W/(m | ²K)]     | L       | Ui-Calc = Ca | alculated maximum individual element U-values [W/(m <sup>2</sup> K)] |

U<sub>a-calc</sub> = Calculated area-weighted average U-values [W/(m<sup>2</sup>K)]

\* Automatic U-value check by the tool does not apply to curtain walls whose limiting standard is similar to that for windows.

\*\* Display windows and similar glazing are excluded from the U-value check. \*\*\* Values for rooflights refer to the horizontal position.

^ For fire doors, limiting U-value is 1.8 W/m²K

N.B.: Neither roof ventilators (inc. smoke vents) nor swimming pool basins are modelled or checked against the limiting standards by the tool.

| Air permeability   | Limiting standard | This building |
|--------------------|-------------------|---------------|
| m³/(h.m²) at 50 Pa | 8                 | 3             |

#### **Building services**

For details on the standard values listed below, system-specific guidance, and additional regulatory requirements, refer to the Approved Documents.

| Whole building lighting automatic monitoring & targeting with alarms for out-of-range values | YES   |
|----------------------------------------------------------------------------------------------|-------|
| Whole building electric power factor achieved by power factor correction                     | >0.95 |

1- FCU

|                                                                                                                                        | Heating efficiency   | <b>Cooling efficiency</b> | Radiant efficiency    | SFP [W/(I/s)] | HR efficiency |  |
|----------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------|-----------------------|---------------|---------------|--|
| This system                                                                                                                            | 2.66                 | 5                         | 0                     | 1.4           | 0.85          |  |
| Standard value                                                                                                                         | 2.5*                 | 4.5**                     | N/A                   | 2^            | N/A           |  |
| Automatic moni                                                                                                                         | toring & targeting w | ith alarms for out-of     | -range values for thi | s HVAC system | n YES         |  |
| * Standard shown is for all types >12 kW output, except absorption and gas engine heat pumps.                                          |                      |                           |                       |               |               |  |
| ** Standard shown is for air-cooled chillers >=400 kW. For chillers <400 kW, limiting SEER is 4.                                       |                      |                           |                       |               |               |  |
| ^ Limiting SFP may be increased by the amounts specified in the Approved Documents if the installation includes particular components. |                      |                           |                       |               |               |  |

"No HWS in project, or hot water is provided by HVAC system"

### Zone-level mechanical ventilation, exhaust, and terminal units

| ID    | System type in the Approved Documents                                                                                                |
|-------|--------------------------------------------------------------------------------------------------------------------------------------|
| Α     | Local supply or extract ventilation units                                                                                            |
| В     | Zonal supply system where the fan is remote from the zone                                                                            |
| С     | Zonal extract system where the fan is remote from the zone                                                                           |
| D     | Zonal balanced supply and extract ventilation system                                                                                 |
| E     | Local balanced supply and extract ventilation units                                                                                  |
| F     | Other local ventilation units                                                                                                        |
| G     | Fan assisted terminal variable air volume units                                                                                      |
| Н     | Fan coil units                                                                                                                       |
| 1     | Kitchen extract with the fan remote from the zone and a grease filter                                                                |
| NB: L | Limiting SFP may be increased by the amounts specified in the Approved Documents if the installation includes particular components. |

NB: Limiting SFP may be increased by the amounts specified in the Approved Documents if the installation includes particular components.

| Zone name                           |     | SFP [W/(I/s)] |     |     |               |     |     |     |   | UD officiency |          |
|-------------------------------------|-----|---------------|-----|-----|---------------|-----|-----|-----|---|---------------|----------|
| ID of system type                   | Α   | В             | С   | D   | E             | F   | G   | Н   | I | HK eniciency  |          |
| Standard value                      | 0.3 | 1.1           | 0.5 | 2.3 | 2             | 0.5 | 0.5 | 0.4 | 1 | Zone          | Standard |
| Block I Flexible Commercial Unit 09 | ÷.  |               | -   | ÷ 1 | -             | -   | -   | 0.2 | - | -             | N/A      |
| Block J Flexible Commercial Unit 07 | -   | -             | -   | ÷ 1 | -             | -   | -   | 0.2 | - | -             | N/A      |
| Block J Flexible Commercial Unit 05 | -   | -             | -   | -   | -             | -   | -   | 0.2 | - | -             | N/A      |
| Block K Flexible Commercial Unit 01 |     | -             | -   | -   | -             | -   | -   | 0.2 | - | -             | N/A      |
| Block K Flexible Commercial Unit 2  |     |               |     |     |               | -   | -   | 0.2 | - | -             | N/A      |
| Block I Flexible Commercial Unit 08 |     | -             | -   | -   |               | -   | -   | 0.2 | - | -             | N/A      |
| Block J Flexible Commercial Unit 06 | -   | -             | -   |     | 1 <b>9</b> 33 | -   | -   | 0.2 | - | -             | N/A      |
| Block K Flexible Commercial Unit 03 | E.  | -             | -   | - 1 | -             | -   | -   | 0.2 | - | -             | N/A      |
| Block K Flexible Commercial Unit 04 |     | -             | -   | 5   |               | -   | -   | 0.2 | - |               | N/A      |

| General lighting and display lighting | General luminaire | Displa          | y light source                    |
|---------------------------------------|-------------------|-----------------|-----------------------------------|
| Zone name                             | Efficacy [Im/W]   | Efficacy [lm/W] | Power density [W/m <sup>2</sup> ] |
| Standard value                        | 95                | 80              | 0.3                               |
| Block I Flexible Commercial Unit 09   | 120               | 80              | 1.875                             |

| General lighting and display lighting | General luminaire | Displa          | y light source                    |
|---------------------------------------|-------------------|-----------------|-----------------------------------|
| Zone name                             | Efficacy [Im/W]   | Efficacy [Im/W] | Power density [W/m <sup>2</sup> ] |
| Standard value                        | 95                | 80              | 0.3                               |
| Block J Flexible Commercial Unit 07   | 120               | 80              | 1.875                             |
| Block J Flexible Commercial Unit 05   | 120               | 80              | 1.875                             |
| Block K Flexible Commercial Unit 01   | 120               | 80              | 1.875                             |
| Block K Flexible Commercial Unit 2    | 120               | 80              | 1.875                             |
| Block I Flexible Commercial Unit 08   | 120               | 80              | 1.875                             |
| Block J Flexible Commercial Unit 06   | 120               | 80              | 1.875                             |
| Block K Flexible Commercial Unit 03   | 120               | 80              | 1.875                             |
| Block K Flexible Commercial Unit 04   | 120               | 80              | 1.875                             |

## The spaces in the building should have appropriate passive control measures to limit solar gains in summer

| Zone                                | Solar gain limit exceeded? (%) | Internal blinds used? |
|-------------------------------------|--------------------------------|-----------------------|
| Block I Flexible Commercial Unit 09 | YES (+20.4%)                   | NO                    |
| Block J Flexible Commercial Unit 07 | NO (-49.6%)                    | NO                    |
| Block J Flexible Commercial Unit 05 | NO (-12.2%)                    | NO                    |
| Block K Flexible Commercial Unit 01 | NO (-1.5%)                     | NO                    |
| Block K Flexible Commercial Unit 2  | YES (+39.5%)                   | NO                    |
| Block   Flexible Commercial Unit 08 | NO (-44.7%)                    | NO                    |
| Block J Flexible Commercial Unit 06 | YES (+15.8%)                   | NO                    |
| Block K Flexible Commercial Unit 03 | YES (+48%)                     | NO                    |
| Block K Flexible Commercial Unit 04 | NO (-34.7%)                    | NO                    |

### Regulation 25A: Consideration of high efficiency alternative energy systems

| Were alternative energy systems considered and analysed as part of the design process? | NO |
|----------------------------------------------------------------------------------------|----|
| Is evidence of such assessment available as a separate submission?                     | NO |
| Are any such measures included in the proposed design?                                 | NO |

### Technical Data Sheet (Actual vs. Notional Building)

### **Building Global Parameters**

|                                                       | Actual | Notional | % Ai    |
|-------------------------------------------------------|--------|----------|---------|
| Floor area [m <sup>2</sup> ]                          | 1016.5 | 1016.5   | 100     |
| External area [m <sup>2</sup> ]                       | 648.2  | 1690.8   | -       |
| Weather                                               | LON    | LON      | 70.<br> |
| Infiltration [m <sup>3</sup> /hm <sup>2</sup> @ 50Pa] | 3      | 3        | _       |
| Average conductance [W/K]                             | 731.6  | 517.92   | 7.<br>  |
| Average U-value [W/m <sup>2</sup> K]                  | 1.13   | 0.31     | -       |
| Alpha value* [%]                                      | 18.64  | 10       | =       |

\* Percentage of the building's average heat transfer coefficient which is due to thermal bridging

### Energy Consumption by End Use [kWh/m<sup>2</sup>]

|            | Actual | Notional |
|------------|--------|----------|
| Heating    | 4.19   | 1.57     |
| Cooling    | 4.94   | 3.72     |
| Auxiliary  | 13.93  | 12.45    |
| Lighting   | 14.97  | 23.73    |
| Hot water  | 0.67   | 0.56     |
| Equipment* | 20.26  | 20.26    |
| TOTAL**    | 38.71  | 42.03    |

\* Energy used by equipment does not count towards the total for consumption or calculating emissions.
\*\* Total is net of any electrical energy displaced by CHP generators, if applicable.

### Energy Production by Technology [kWh/m<sup>2</sup>]

|                       | Actual | Notional |
|-----------------------|--------|----------|
| Photovoltaic systems  | 0      | 0        |
| Wind turbines         | 0      | 0        |
| CHP generators        | 0      | 0        |
| Solar thermal systems | 0      | 0        |
| Displaced electricity | 0      | 0        |

### Energy & CO<sub>2</sub> Emissions Summary

|                                               | Actual | Notional |
|-----------------------------------------------|--------|----------|
| Heating + cooling demand [MJ/m <sup>2</sup> ] | 108.29 | 79.01    |
| Primary energy [kWh/m <sup>2</sup> ]          | 49.73  | 58.72    |
| Total emissions [kg/m <sup>2</sup> ]          | 5.26   | 5.68     |

### **Building Use**

| ea | Building Type                                                   |
|----|-----------------------------------------------------------------|
|    | Retail/Financial and Professional Services                      |
|    | Restaurants and Cafes/Drinking Establishments/Takeaways         |
|    | Offices and Workshop Businesses                                 |
|    | General Industrial and Special Industrial Groups                |
|    | Storage or Distribution                                         |
|    | Hotels                                                          |
|    | Residential Institutions: Hospitals and Care Homes              |
|    | Residential Institutions: Residential Schools                   |
|    | Residential Institutions: Universities and Colleges             |
|    | Secure Residential Institutions                                 |
|    | Residential Spaces                                              |
|    | Non-residential Institutions: Community/Day Centre              |
|    | Non-residential Institutions: Libraries, Museums, and Galleries |
|    | Non-residential Institutions: Education                         |
|    | Non-residential Institutions: Primary Health Care Building      |
|    | Non-residential Institutions: Crown and County Courts           |
|    | General Assembly and Leisure, Night Clubs, and Theatres         |
|    | Others: Passenger Terminals                                     |
|    | Others: Emergency Services                                      |
|    | Others: Miscellaneous 24hr Activities                           |
|    | Others: Car Parks 24 hrs                                        |
|    | Others: Stand Alone Utility Block                               |

| ŀ           | HVAC Systems Performance                                               |                   |                   |                    |                    |                   |               |               |                  |                  |  |  |
|-------------|------------------------------------------------------------------------|-------------------|-------------------|--------------------|--------------------|-------------------|---------------|---------------|------------------|------------------|--|--|
| System Type |                                                                        | Heat dem<br>MJ/m2 | Cool dem<br>MJ/m2 | Heat con<br>kWh/m2 | Cool con<br>kWh/m2 | Aux con<br>kWh/m2 | Heat<br>SSEEF | Cool<br>SSEER | Heat gen<br>SEFF | Cool gen<br>SEER |  |  |
| [ST         | [ST] Fan coil systems, [HS] ASHP, [HFT] Electricity, [CFT] Electricity |                   |                   |                    |                    |                   |               |               |                  |                  |  |  |
|             | Actual                                                                 | 36.4              | 71.8              | 4.2                | 4.9                | 13.9              | 2.41          | 4.04          | 2.66             | 5                |  |  |
|             | Notional                                                               | 17.1              | 62                | 1.6                | 3.7                | 12.5              | 3.01          | 4.63          |                  |                  |  |  |
| [ST         | [ST] No Heating or Cooling                                             |                   |                   |                    |                    |                   |               |               |                  |                  |  |  |
|             | Actual                                                                 | 0                 | 0                 | 0                  | 0                  | 0                 | 0             | 0             | 0                | 0                |  |  |
|             | Notional                                                               | 0                 | 0                 | 0                  | 0                  | 0                 | 0             | 0             |                  |                  |  |  |

### Key to terms

| Heat dem [MJ/m2]  | = Heating energy demand                                                                               |
|-------------------|-------------------------------------------------------------------------------------------------------|
| Cool dem [MJ/m2]  | = Cooling energy demand                                                                               |
| Heat con [kWh/m2] | = Heating energy consumption                                                                          |
| Cool con [kWh/m2] | = Cooling energy consumption                                                                          |
| Aux con [kWh/m2]  | = Auxiliary energy consumption                                                                        |
| Heat SSEFF        | = Heating system seasonal efficiency (for notional building, value depends on activity glazing class) |
| Cool SSEER        | = Cooling system seasonal energy efficiency ratio                                                     |
| Heat gen SSEFF    | = Heating generator seasonal efficiency                                                               |
| Cool gen SSEER    | = Cooling generator seasonal energy efficiency ratio                                                  |
| ST                | = System type                                                                                         |
| HS                | = Heat source                                                                                         |
| HFT               | = Heating fuel type                                                                                   |
| CFT               | = Cooling fuel type                                                                                   |

= Cooling fuel type

Paddington Green Police Station

## 12 Appendix B – SAP Reports

**A.1** 

#### **BURO HAPPOLD**



Dwelling Reference: Dwelling Type: 2-4 Harrow Road London

W2 1XJ

K\_12\_01 New Dwelling Design Stage

# **BE LEAN**

| 1. Overall dwelling dimensions                                                        |             |                         |         |                         |                       |
|---------------------------------------------------------------------------------------|-------------|-------------------------|---------|-------------------------|-----------------------|
|                                                                                       | Area(m²)    | Av. Height(m)           |         | Volume(m³)              |                       |
| Ground Floor<br>Total floor area TFA<br>Dwelling volume                               | 78.64 ( 1a) | x 2.5                   | (2a) =  | 196.6<br>78.64<br>196.6 | ( 3a)<br>( 4)<br>( 5) |
| 2. Ventilation Rate                                                                   |             |                         |         |                         |                       |
| Chimneys/Flues                                                                        | 0           | x 80 =                  |         | 0                       | (6a)                  |
| Open chimneys                                                                         | 0           | x 20 =                  |         | 0                       | (6b)                  |
| Chimneys / flues attached to closed fire                                              | 0           | x 10 =                  |         | 0                       | (6c)                  |
| Flues attached to solid fuel boiler                                                   | 0           | x 20 =                  |         | 0                       | (6d)                  |
| Flues attached to other heater                                                        | 0           | x 35 -                  |         | 0                       | (6a)                  |
| Number of blocked chimneys                                                            | 0           | x 20 =                  |         | 0                       | (6C)                  |
| Number of intermittent extract fans                                                   | 2           | x 10 =                  |         | 20                      | (01)                  |
| Number of nassive vents                                                               | 2           | x 10 -                  |         | 20                      | (7a)                  |
| Number of flueless gas fires                                                          | 0           | x 10 =                  |         | 0                       | (01)                  |
| Number of flueless gas files                                                          | 0           | x 40 =<br>Air changes p | er hour | U                       | (/c)                  |
| Number of storeys in the dwelling (ns)                                                |             |                         | 0.1     | 0 1                     | (8)                   |
| Infiltration due to chimneys, flues, fans, PSVs, etc                                  |             |                         | 0       | 0                       | (9)                   |
| Additional infiltration                                                               |             |                         | 0       | 0                       | (10)                  |
| Structural infiltration                                                               |             |                         | 0       | 0                       | (11)                  |
| Suspended wooden ground floor                                                         |             |                         | 0       | 0                       | (12)                  |
| No draught lobby                                                                      |             |                         | 0       | 0                       | (13)                  |
| Percentage of windows and doors draught proofed                                       |             |                         | 0       | 0                       | (14)                  |
| Window infiltration                                                                   |             |                         | 0       | 0                       | (15)                  |
| Inflitration rate<br>Air permechility value APEO $(m^3/b/m^2)$                        |             |                         | 0       | 0                       | (16)                  |
| An permeability value, AP30, (11/11/11)<br>Air nermeability value, AP4, $(m^3/h/m^2)$ |             |                         | 5       | 5                       | (1/)                  |
| Air permeability value)                                                               |             |                         | 0.25    | 0.25                    | (1/a)                 |
| Number of sides on which dwelling is sheltered                                        |             |                         | 0.55    | 0.55                    | (10)                  |
| Shelter factor                                                                        |             |                         | 2       | 0.85                    | (20)                  |
|                                                                                       |             |                         |         | U.U.J                   | 1611                  |





| Infiltration | nfiltration rate incorporating shelter factor<br>nfiltration rate modified for monthly wind speed |                     |                     |                   |                    |                   |                |              |      |      |      | 0.3  | (21)        |                         |
|--------------|---------------------------------------------------------------------------------------------------|---------------------|---------------------|-------------------|--------------------|-------------------|----------------|--------------|------|------|------|------|-------------|-------------------------|
|              | Jan                                                                                               | Feb                 | Mar                 | Apr               | May                | Jun               | Jul            | Aug          | Sep  | Oct  | Nov  | Dec  | Total       | (22)                    |
| Monthly      | 1onthly average wind speed from Table U2                                                          |                     |                     |                   |                    |                   |                |              |      |      |      |      |             |                         |
| Wind Fac     | 5.1<br>ctor                                                                                       | 5                   | 4.9                 | 4.4               | 4.3                | 3.8               | 3.8            | 3.7          | 4    | 4.3  | 4.5  | 4.7  | 52.5        | (22)                    |
| Adjusted     | 1.28<br>infiltratio                                                                               | 1.25<br>on rate (a  | 1.23<br>allowing f  | 1.1<br>or shelte  | 1.08<br>r and wir  | 0.95<br>nd speed) | 0.95           | 0.93         | 1    | 1.08 | 1.13 | 1.18 | 13.13       | (22a)                   |
| Calculate    | 0.38<br>e effective                                                                               | 0.37<br>e air chan  | 0.37<br>ige rate fo | 0.33<br>or the ap | 0.32<br>plicable c | 0.28<br>case:     | 0.28           | 0.28         | 0.3  | 0.32 | 0.34 | 0.35 | 3.92        | (22b)                   |
| a) If bala   | nced mec                                                                                          | chanical v          | ventilatio          | n with he         | at recove          | ery (MVH          | R)             |              |      |      |      |      | 0<br>0<br>0 | (23a)<br>(23b)<br>(23c) |
| b) If bala   | 0<br>nced med                                                                                     | 0<br>chanical v     | 0<br>ventilatio     | 0<br>n withou     | 0<br>t heat red    | 0<br>covery (N    | 0<br>1∨)       | 0            | 0    | 0    | 0    | 0    |             | (24a)                   |
| c) If who    | 0<br>le house e                                                                                   | 0<br>extract ve     | 0<br>entilation     | 0<br>or positi    | 0<br>ve input      | 0<br>ventilatio   | 0<br>on from o | 0<br>outside | 0    | 0    | 0    | 0    |             | (24b)                   |
| d) If natu   | 0<br>Iral ventil                                                                                  | 0<br>ation or v     | 0<br>whole ho       | 0<br>use posit    | 0<br>ive input     | 0<br>ventilati    | 0<br>on from l | 0<br>oft     | 0    | 0    | 0    | 0    |             | (24c)                   |
| Effective    | 0.57<br>air chang                                                                                 | 0.57<br>ge rate     | 0.57                | 0.55              | 0.55               | 0.54              | 0.54           | 0.54         | 0.54 | 0.55 | 0.56 | 0.56 |             | (24d)                   |
| Effective    | 0.57<br>air chang                                                                                 | 0.57<br>ge rate fro | 0.57<br>om PCDB     | 0.55<br>:         | 0.55               | 0.54              | 0.54           | 0.54         | 0.54 | 0.55 | 0.56 | 0.56 |             | (25)                    |
|              | 0.57                                                                                              | 0.57                | 0.57                | 0.55              | 0.55               | 0.54              | 0.54           | 0.54         | 0.54 | 0.55 | 0.56 | 0.56 |             | (25)                    |

### 3. Heat losses and heat loss parameter

| Items in the table    | below are to       | be expanded as n           | ecessary to allow | for all different ty | pes of element e. | g. 4 wall types.   | The k -v | alue                          |
|-----------------------|--------------------|----------------------------|-------------------|----------------------|-------------------|--------------------|----------|-------------------------------|
| ELEMENT<br>Solid door | Gross<br>area (m²) | Openings<br>m <sup>2</sup> | Net Area<br>A ,m² | U-value<br>W/m2K     | A X U<br>(W/K)    | k-value<br>kJ/m²∙K | 0        | A X k<br>kJ/K <sub>(26)</sub> |
| Semi-glazed door      |                    |                            |                   |                      |                   |                    | 0        | (26a)                         |
| Window                |                    |                            |                   |                      |                   |                    | 23.2     | (27)                          |
| Roof window           |                    |                            |                   |                      |                   |                    | 0        | (27a)                         |
| Basement floor        |                    |                            |                   | 0                    |                   |                    | 0        | (28)                          |
| Ground floor          |                    |                            |                   | 0                    |                   |                    | 0        | (28a)                         |
| Exposed floor         |                    |                            |                   | 0                    |                   |                    | 0        | (28b)                         |
| Basement wall         |                    |                            |                   | 0                    |                   |                    | 0        | (29)                          |
| External wall         |                    |                            |                   | 4206.64              |                   |                    | 6.43     | (29a)                         |
| Roof                  |                    |                            |                   | 0                    |                   |                    | 0        | (30)                          |





| Total ar  | ea of ext                                                                 | ernal eler          | ments ∑A,         | m²                      |            |          |           |          |           |          |       |       | 54.85    | (31)  |
|-----------|---------------------------------------------------------------------------|---------------------|-------------------|-------------------------|------------|----------|-----------|----------|-----------|----------|-------|-------|----------|-------|
| Party W   | /all                                                                      |                     |                   |                         |            |          |           |          |           |          |       |       | 0        | (32)  |
| Party flo | oor                                                                       |                     |                   |                         |            |          |           |          |           |          |       |       | 6291.2   | (32a) |
| Party ce  | eiling                                                                    |                     |                   |                         |            |          |           |          |           |          |       |       | 7864     | (32b) |
| Interna   | nternal wall **                                                           |                     |                   |                         |            |          |           |          |           |          |       |       |          | (33c) |
| Interna   | nternal floor                                                             |                     |                   |                         |            |          |           |          |           |          |       |       | 0        | (32d) |
| Interna   | nternal ceiling floor                                                     |                     |                   |                         |            |          |           |          |           |          |       |       | 0        | (32e) |
| Fabric h  | Fabric heat loss, W/K = $\sum$ (A x U)                                    |                     |                   |                         |            |          |           |          |           |          |       |       | 29.63    | (33)  |
| Heat ca   | Heat capacity $Cm = \sum (A \times k)$                                    |                     |                   |                         |            |          |           |          |           |          |       |       | 25189.64 | (34)  |
| Therma    | Fhermal mass parameter (TMP = Cm ÷ TFA) in kJ/m <sup>2</sup> K            |                     |                   |                         |            |          |           |          |           |          |       |       | 100      | (35)  |
| Linear T  | inear Thermal bridges: $\Sigma$ (L x $\Psi$ ) calculated using Appendix K |                     |                   |                         |            |          |           |          |           |          |       |       | 2.63     | (36)  |
| Point T   | nermal br                                                                 | ridges: ∑χ          | (W/K) if s        | significar              | nt point t | hermal b | ridge pre | sent and | values av | vailable |       |       | 2.63     | (36a) |
| Total fa  | bric heat                                                                 | loss H = 2          | ∑(A × U) +        | $\Sigma(L \times \Psi)$ | ) +∑χ      |          |           |          |           |          |       |       | 32.26    | (37)  |
| Ventilat  | ion heat                                                                  | loss calcu          | ulated mo         | nthly                   |            |          |           |          |           |          |       |       |          |       |
| Heat tra  | 37.15<br>ansfer co                                                        | 36.97<br>efficient, | 36.79<br>W/K      | 35.95                   | 35.79      | 35.06    | 35.06     | 34.92    | 35.34     | 35.79    | 36.11 | 36.44 |          | (38)  |
| Heat lo   | 69.41<br>ss param                                                         | 69.23<br>eter (HLP  | 69.05<br>), W/m²K | 68.2                    | 68.05      | 67.31    | 67.31     | 67.18    | 67.59     | 68.05    | 68.36 | 68.7  |          | (39)  |
| Numbe     | 0.88<br>r of days                                                         | 0.88<br>in month    | 0.88<br>(Table 1a | 0.87<br>I)              | 0.87       | 0.86     | 0.86      | 0.85     | 0.86      | 0.87     | 0.87  | 0.87  |          | (40)  |
|           | 31                                                                        | 28                  | 31                | 30                      | 31         | 30       | 31        | 31       | 30        | 31       | 30    | 31    |          | (41)  |
| 4. W      | ater hea                                                                  | iting ene           | ergy requi        | irement                 | -          |          |           |          |           | _        |       |       |          |       |
|           |                                                                           | ene ene             |                   |                         |            |          |           |          |           |          |       |       |          |       |
| Assume    | d occupa                                                                  | ancy, N             |                   |                         |            |          |           |          |           |          |       |       | 2.44     | (42)  |

| Assumed                                                                       | l occupar                                                              | ncy, N     |            |             |            |            |           |           |          |           |        |        | 2.44    | (42)  |
|-------------------------------------------------------------------------------|------------------------------------------------------------------------|------------|------------|-------------|------------|------------|-----------|-----------|----------|-----------|--------|--------|---------|-------|
| Hot wate                                                                      | er usage i                                                             | n litres p | er day fo  | r mixer sł  | nowers, V  | /d,showe   | r (from A | ppendix   | 1)       |           |        |        |         |       |
|                                                                               | 0                                                                      | 0          | 0          | 0           | 0          | 0          | 0         | 0         | 0        | 0         | 0      | 0      |         | (42a) |
| Hot wate                                                                      | lot water usage in litres per day for baths, Vd,bath (from Appendix J) |            |            |             |            |            |           |           |          |           |        |        |         |       |
|                                                                               | 75.03                                                                  | 73.92      | 72.35      | 69.45       | 67.29      | 64.89      | 63.59     | 65.15     | 66.84    | 69.41     | 72.37  | 74.78  |         | (42b) |
| Hot wate                                                                      | er usage i                                                             | n litres p | er day fo  | r other us  | ses, Vd,ot | ther (fror | n Appeno  | (L xit    |          |           |        |        |         |       |
|                                                                               | 39.58                                                                  | 38.14      | 36.7       | 35.26       | 33.83      | 32.39      | 32.39     | 33.83     | 35.26    | 36.7      | 38.14  | 39.58  |         | (42c) |
| Annual a                                                                      | verage h                                                               | ot water   | usage in   | litres per  | day Vd,a   | verage (f  | rom App   | endix J)  |          |           |        |        | 105.55  | (43)  |
| Hot water usage in litres per day for each month Vd,m = (42a) + (42b) + (42c) |                                                                        |            |            |             |            |            |           |           |          |           |        |        |         |       |
|                                                                               | 114.61                                                                 | 112.06     | 109.05     | 104.72      | 101.11     | 97.27      | 95.97     | 98.97     | 102.11   | 106.12    | 110.51 | 114.36 | 1266.87 | (44)  |
| Energy co                                                                     | ontent of                                                              | hot wate   | er used =  | 4.18 x Vo   | d,m x nm   | x DTm /    | 3600 kW   | h/month   | (from Ap | opendix J | )      |        |         |       |
|                                                                               | 181.52                                                                 | 159.57     | 167.61     | 143.36      | 136.12     | 119.61     | 116.07    | 122.55    | 125.91   | 144       | 157.44 | 179.06 | 1752.82 | (45)  |
| Distribut                                                                     | ion loss (                                                             | 46) = 0.1  | 5 x (45)   |             |            |            |           |           |          |           |        |        |         |       |
|                                                                               | 27.23                                                                  | 23.94      | 25.14      | 21.5        | 20.42      | 17.94      | 17.41     | 18.38     | 18.89    | 21.6      | 23.62  | 26.86  |         | (46)  |
| Storage v                                                                     | volume (l                                                              | itres) inc | luding an  | y solar or  | WWHRS      | storage    | within sa | ime vesse | el       |           |        |        | 0       | (47)  |
| Water st                                                                      | orage los                                                              | s (or HIU  | loss)      |             |            |            |           |           |          |           |        |        |         |       |
| a) If man                                                                     | ufacture                                                               | r's declar | ed loss fa | actor is kr | nown (kW   | /h/day):   |           |           |          |           |        |        | 0       | (48)  |





| Temperature factor from Table 2b 0                                                                                                                                                                         | (49)       |  |  |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|--|--|--|--|--|--|--|--|--|
| Energy lost from water storage, kWh/day (48) x (49) =                                                                                                                                                      |            |  |  |  |  |  |  |  |  |  |  |
| b) If manufacturer's declared loss factor is not known :                                                                                                                                                   |            |  |  |  |  |  |  |  |  |  |  |
| Hot water storage loss factor from Table 2 (kWh/litre/day) 0                                                                                                                                               | (51)       |  |  |  |  |  |  |  |  |  |  |
| Volume factor from Table 2a 0                                                                                                                                                                              | (52)       |  |  |  |  |  |  |  |  |  |  |
| Temperature factor from Table 2b 0                                                                                                                                                                         | (53)       |  |  |  |  |  |  |  |  |  |  |
| Energy lost from water storage, kWh/day 0                                                                                                                                                                  | (54)       |  |  |  |  |  |  |  |  |  |  |
| Enter (50) or (54) in (55) 0                                                                                                                                                                               | (55)       |  |  |  |  |  |  |  |  |  |  |
| Water storage (or HIU) loss calculated for each month (56) = $(55) \times (41)$                                                                                                                            |            |  |  |  |  |  |  |  |  |  |  |
| 0 	 0 	 0 	 0 	 0 	 0 	 0 	 0 	 0 	 0                                                                                                                                                                      |            |  |  |  |  |  |  |  |  |  |  |
| where Vs is Vww from Appendix G3 or (H12) from Appendix H (as applicable).                                                                                                                                 |            |  |  |  |  |  |  |  |  |  |  |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                      | (57)       |  |  |  |  |  |  |  |  |  |  |
| modified by factor from Table H4 if there is solar water heating and a cylinder thermostat, although not for DHW-only heat                                                                                 | networks)  |  |  |  |  |  |  |  |  |  |  |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                      | (59)       |  |  |  |  |  |  |  |  |  |  |
| 50.96 46.03 50.96 49.32 50.96 47.97 48.91 50.43 49.32 50.96 49.32 50.96<br>Total heat required for water heating calculated for each month (62) = $0.85 \times (45) + (46) + (57) + (59) + (61)$           | (61)       |  |  |  |  |  |  |  |  |  |  |
| 232.48 205.6 218.57 192.67 187.08 167.58 164.98 172.98 175.22 194.96 206.76 230.02 23 CWWHRS DHW input calculated using Appendix G (negative quantity) (enter 0 if no WWHRS contribution to water heating) | 348.9 (62) |  |  |  |  |  |  |  |  |  |  |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                      | (63a)      |  |  |  |  |  |  |  |  |  |  |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                      | (63b)      |  |  |  |  |  |  |  |  |  |  |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                      | (63c)      |  |  |  |  |  |  |  |  |  |  |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                      | (63d)      |  |  |  |  |  |  |  |  |  |  |
| 232.48 205.6 218.57 192.67 187.08 167.58 164.98 172.98 175.22 194.96 206.76 230.02 23<br>Output from water heater for each month, kWh/month (64) = (62) + (63a) + (63b) + (63c) + (63d)                    | 348.9 (64) |  |  |  |  |  |  |  |  |  |  |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                      | (64a)      |  |  |  |  |  |  |  |  |  |  |
| 73.1 64.56 68.47 59.99 58 51.76 50.82 53.36 54.19 60.62 64.68 72.28 include (57) m in calculation of (65) m only if hot water store is in the dwelling or hot water is from heat network                   | (65)       |  |  |  |  |  |  |  |  |  |  |

### 5. Internal gains (see Tables 5 and 5a)

Metabolic gains (Table 5), watts

121.83 121.83 121.83 121.83 121.83 121.83 121.83 121.83 121.83 121.83 121.83 121.83 121.83





Page 4



Lighting gains (calculated in Appendix L, equation L12 or L12a), also see Table 5

| Appliance  | 109.24<br>es gains ( | 120.94<br>calculate  | 109.24<br>d in Appe | 112.88<br>endix L, e | 109.24<br>quation l | 112.88<br>.16 or L16 | 109.24<br>6a), also s | 109.24<br>see Table | 112.88<br>5 | 109.24 | 112.88 | 109.24 | (67) |
|------------|----------------------|----------------------|---------------------|----------------------|---------------------|----------------------|-----------------------|---------------------|-------------|--------|--------|--------|------|
| Cooking §  | 216.57<br>gains (cal | 218.82<br>culated in | 213.16<br>n Appenc  | 201.1<br>lix L, equ  | 185.88<br>ation L18 | 171.58<br>or L18a)   | 162.02<br>, also see  | 159.78<br>Table 5   | 165.44      | 177.5  | 192.71 | 207.02 | (68) |
| Pumps ar   | 35.18<br>nd fans ga  | 35.18<br>ains (Tabl  | 35.18<br>le 5a)     | 35.18                | 35.18               | 35.18                | 35.18                 | 35.18               | 35.18       | 35.18  | 35.18  | 35.18  | (69) |
| Losses e.; | 3<br>g. evapor       | 3<br>ation (ne       | 3<br>gative va      | 3<br>ilues) (Ta      | 3<br>ble 5          | 0                    | 0                     | 0                   | 0           | 3      | 3      | 3      | (70) |
| Water he   | -97.46<br>ating gai  | -97.46<br>ns (Table  | -97.46<br>5)        | -97.46               | -97.46              | -97.46               | -97.46                | -97.46              | -97.46      | -97.46 | -97.46 | -97.46 | (71) |
| Total inte | 98.25<br>ernal gain  | 96.08<br>Is          | 92.03               | 83.33                | 77.96               | 71.89                | 68.31                 | 71.71               | 75.27       | 81.48  | 89.83  | 97.15  | (72) |
|            | 486.61               | 498.39               | 476.97              | 459.85               | 435.62              | 415.9                | 399.12                | 400.28              | 413.13      | 430.76 | 457.97 | 475.95 | (73) |

6. Solar gains

| Solar gains in watts, calculated for each month |                                          |        |        |        |         |         |        |        |        |        |        |        |      |
|-------------------------------------------------|------------------------------------------|--------|--------|--------|---------|---------|--------|--------|--------|--------|--------|--------|------|
|                                                 | 131.61                                   | 236.45 | 356.1  | 495.84 | 605.23  | 622.78  | 591.3  | 506.34 | 403.97 | 270.11 | 159.87 | 111.19 | (83) |
| Total gair                                      | Total gains – internal and solar (watts) |        |        |        |         |         |        |        |        |        |        |        |      |
|                                                 | 618.22                                   | 734.84 | 833.07 | 955.7  | 1040.86 | 1038.68 | 990.42 | 906.62 | 817.1  | 700.87 | 617.85 | 587.14 | (84) |

| 7. Me                 | ean inter                                                                                                                                          | nal tem             | perature           | e (heatin           | ig seasor          | ר)                  |                     |                     |                                |                    |                    |              |      |              |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------|---------------------|--------------------|---------------------|---------------------|---------------------|--------------------------------|--------------------|--------------------|--------------|------|--------------|
| Tempera<br>Utilisatio | emperature during heating periods in the living area from Table 9, Th1 (°C) 2<br>tilisation factor for gains for living area, 121,m (see Table 9a) |                     |                    |                     |                    |                     |                     |                     |                                |                    |                    |              |      | (85)         |
| Mean in               | 0.93<br>ternal te                                                                                                                                  | 0.89<br>mperatur    | 0.82<br>e in livin | 0.7<br>g area T1    | 0.55<br>(follow s  | 0.4<br>steps 3 ar   | 0.29<br>nd 4 in Ta  | 0.33<br>ible 9c)    | 0.52                           | 0.76               | 0.89               | 0.94         |      | (86)         |
| Tempera               | 19.33<br>ature dur                                                                                                                                 | 19.67<br>ing heati  | 20.09<br>ng perioc | 20.55<br>Is in rest | 20.83<br>of dwelli | 20.95<br>ng from 1  | 20.99<br>Table 9, T | 20.98<br>h2 (°C)    | 20.89                          | 20.5               | 19.85              | 19.27        |      | (87)         |
| Roof                  | 20.18                                                                                                                                              | 20.18               | 20.19              | 20.2<br>I           | 20.2<br>Utilisatio | 20.21<br>n factor f | 20.21<br>or gains f | 20.21<br>for rest o | 20.2<br>f dwellin <sub>{</sub> | 20.2<br>g, ⊡2,m (s | 20.19<br>see Table | 20.19<br>9a) |      | (88)         |
| Roof                  | 0.92                                                                                                                                               | 0.87                | 0.8                | 0.67                | 0.51<br>Me         | 0.35<br>ean interi  | 0.24<br>nal tempo   | 0.28<br>erature ir  | 0.47<br>n the rest             | 0.73<br>of dwell   | 0.88<br>ing T2     | 0.93         |      | (89)         |
| Living ar             | 18.22<br>ea fractio                                                                                                                                | 18.66<br>on         | 19.17              | 19.72               | 20.03              | 20.17               | 20.2                | 20.19               | 20.11                          | 19.68              | 18.89              | 18.15        | 0.38 | (90)<br>(91) |
| Mean in               | ternal te                                                                                                                                          | mperatur            | e (for the         | e whole o           | dwelling)          |                     |                     |                     |                                |                    |                    |              |      |              |
| Adjusted              | 18.64<br>d mean ir                                                                                                                                 | 19.04<br>Iternal te | 19.52<br>mperatu   | 20.03<br>re:        | 20.33              | 20.47               | 20.5                | 20.49               | 20.4                           | 19.99              | 19.25              | 18.57        |      | (92)         |
|                       | 18.64                                                                                                                                              | 19.04               | 19.52              | 20.03               | 20.33              | 20.47               | 20.5                | 20.49               | 20.4                           | 19.99              | 19.25              | 18.57        |      | (93)         |

8. Space heating requirement





Utilisation factor for gains,

| Useful ga | 0.9<br>ins, mGm     | 0.85<br>n , W        | 0.78                | 0.67               | 0.52                | 0.37            | 0.26        | 0.3    | 0.49   | 0.72   | 0.86   | 0.91   |       | (94)          |
|-----------|---------------------|----------------------|---------------------|--------------------|---------------------|-----------------|-------------|--------|--------|--------|--------|--------|-------|---------------|
| Monthly   | 555.79<br>average e | 626.07<br>external t | 653.61<br>emperat   | 635.74<br>ure from | 540.62<br>Table U1  | 383.11          | 259.31      | 270.43 | 398.11 | 506.2  | 529.04 | 533.87 |       | (95)          |
| Heat loss | 4.3<br>rate for     | 4.9<br>mean inte     | 6.5<br>ernal tem    | 8.9<br>nperature   | 11.7<br>e           | 14.6            | 16.6        | 16.4   | 14.1   | 10.6   | 7.1    | 4.2    |       | (96)          |
| Space he  | 995.35<br>ating req | 978.85<br>uirement   | 898.83<br>for each  | 759.37<br>month    | 587.47              | 394.79          | 262.2       | 274.82 | 426.14 | 638.85 | 830.81 | 987.5  |       | (97)          |
| Solar spa | 327.03<br>ce heatin | 237.07<br>g calcula  | 182.45<br>ted using | 89.01<br>Appendi   | 34.86<br>ix H (nega | 0<br>ative qua  | 0<br>ntity) | 0      | 0      | 98.69  | 217.28 | 337.5  |       | (98a)         |
| Space he  | 0<br>ating req      | 0<br>uirement        | 0<br>: for each     | 0<br>month a       | 0<br>fter solar     | 0<br>r contribu | 0<br>ution  | 0      | 0      | 0      | 0      | 0      |       | (98b)         |
| Space he  | 327.03<br>ating req | 237.07<br>uirement   | 182.45<br>: in kWh/ | 89.01<br>m²/year   | 34.86               | 0               | 0           | 0      | 0      | 98.69  | 217.28 | 337.5  | 19.38 | (98c)<br>(99) |

| 8c. Sp                 | 8c. Space Cooling requirement |                 |                 |                 |                 |                 |               |         |   |   |   |   |   |                |
|------------------------|-------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|---------------|---------|---|---|---|---|---|----------------|
| Heat loss              | rate,                         |                 |                 |                 |                 |                 |               |         |   |   |   |   |   |                |
| Utilisatio             | 0<br>n factor                 | 0<br>· for loss | 0               | 0               | 0               | 0               | 0             | 0       | 0 | 0 | 0 | 0 |   | (100)          |
| Useful lo:             | 0<br>ss, mLm                  | 0<br>1 (watts)  | 0               | 0               | 0               | 0               | 0             | 0       | 0 | 0 | 0 | 0 |   | (101)          |
| Gains                  | 0                             | 0               | 0               | 0               | 0               | 0               | 0             | 0       | 0 | 0 | 0 | 0 |   | (102)          |
| Space co               | 0<br>oling re                 | 0<br>quiremen   | 0<br>It for mon | 0<br>ith, whole | 0<br>e dwelling | 0<br>g, continu | 0<br>Jous (kW | 0<br>h) | 0 | 0 | 0 | 0 |   | (103)<br>(104) |
| Cooled fr<br>Intermitt | 0<br>action<br>ency fac       | 0<br>ctor       | 0               | 0               | 0               | 0               | 0             | 0       | 0 | 0 | 0 | 0 | 0 | (104)<br>(105) |
| Space co               | 0<br>oling re                 | 0<br>quiremen   | 0<br>It for mon | 0<br>ith        | 0               | 0               | 0             | 0 0     | 0 | 0 | 0 | 0 | 0 | (106)          |
| Space co               | 0<br>oling re                 | 0<br>quiremen   | 0<br>it in kWh/ | 0<br>ˈm²/year   | 0               | 0               | 0             | 0       | 0 | 0 | 0 | 0 | 0 | (107)<br>(108) |
| 8f Sn:                 | ace hea                       | ating rea       | uiremen         | t               |                 |                 |               |         |   |   |   |   |   |                |

Fabric Energy Efficiency,

9a. Energy requirements - Individual heating systems including micro-CHP



0

(109)

**TER WORKSHEET** 

0



| Fraction of space heat from secondary/supplementary system, 0 |                       |            |             |            |            |            |           |     |       | 0      | (201)   |        |        |              |                |
|---------------------------------------------------------------|-----------------------|------------|-------------|------------|------------|------------|-----------|-----|-------|--------|---------|--------|--------|--------------|----------------|
| Fraction of space heat from main system(s),                   |                       |            |             |            |            |            |           |     |       |        |         | 1      | (202)  |              |                |
| Fraction of I                                                 | main he               | eating fr  | om main     | system 2   | <u>,</u>   |            |           |     |       |        |         |        |        | 0            | (203)          |
| Fraction of t                                                 | total sp              | ace hea    | t from m    | ain syste  | m 1,       |            |           |     |       |        |         |        |        | 1            | (204)          |
| Fraction of t                                                 | total sp              | ace hea    | t from m    | ain syste  | m 2,       |            |           |     |       |        |         |        |        | 0            | (205)          |
| Efficiency of                                                 | f main s              | space he   | ating sys   | tem 1 (in  | ı %),      |            |           |     |       |        |         |        |        | 92.4         | (206)          |
| Efficiency of                                                 | f main s              | space he   | ating sys   | tem 2 (in  | ı %),      |            |           |     |       |        |         |        |        | 0            | (207)          |
| Efficiency of                                                 | fsecon                | dary/sup   | oplement    | tary heat  | ing systei | n, %,      |           |     |       |        |         |        |        | 0            | (208)          |
| Cooling Syst                                                  | tem Sea               | asonal Ei  | nergy Eff   | iciency Ra | atio,      |            |           |     | 0     |        |         |        |        | 0            | (209)          |
| Space heating                                                 | ng requ               | irement    | t (calcula  | ted abov   | e),        |            |           |     |       |        |         |        |        |              |                |
| 0                                                             |                       | 0          | 0           | 0          | 0          | 0          | 0         | 0   |       | 0      | 0       | 0      | 0      |              | (210)          |
| Space heati                                                   | ng fuel               | (main h    | eating sy   | stem 1),   | kWh/mo     | nth        |           |     | 0     |        |         |        |        | 0            |                |
| 35                                                            | 53.93                 | 256.57     | 197.45      | 96.33      | 37.73      | 0          | 0         | 0   |       | 0      | 106.81  | 235.15 | 365.26 |              | (211)          |
| Space heati                                                   | ng fuel               | (main h    | eating sy   | stem 2),   | kWh/mo     | nth        |           |     | 0     |        |         |        |        | 0            |                |
| 0                                                             |                       | 0          | 0           | 0          | 0          | 0          | 0         | 0   |       | 0      | 0       | 0      | 0      |              | (213)          |
| Space heati                                                   | ng fuel               | (second    | ary), kWl   | h/month    |            |            |           |     | 0     |        |         |        |        | 0            |                |
| 0                                                             |                       | 0          | 0           | 0          | 0          | 0          | 0         | 0   |       | 0      | 0       | 0      | 0      |              | (215)          |
| Output from                                                   | n water               | heater)    | ,           |            |            |            |           |     | 0     |        |         |        |        | 80.3         | (216)          |
| Efficiency of                                                 | f water               | heater     |             |            |            |            |           |     |       |        |         |        |        |              |                |
| 85                                                            | 5.11                  | 84.69      | 84          | 82.83      | 81.54      | 80.3       | 80.3      | 80  | .3    | 80.3   | 83      | 84.49  | 85.2   |              | (217)          |
| Fuel for wat                                                  | ter heat              | ting       |             |            |            |            |           |     |       |        |         |        |        |              |                |
| 27<br>Space Coolin                                            | 73.14                 | 242.78     | 260.21      | 232.6      | 229.43     | 208.69     | 205.45    | 21  | 5.42  | 218.21 | 234.9   | 244.72 | 269.97 | 2835.53      | (219)          |
| space coolin                                                  | ng                    | -          |             |            |            |            |           | -   |       |        |         |        |        |              | (224)          |
| 0<br>Annual tota                                              | lc                    | 0          | 0           | 0          | 0          | 0          | 0         | 0   | h /   | 0      | 0       | 0      | 0      |              | (221)          |
| Snace heati                                                   | ng fuel               | used m     | ain syste   | m 1        |            |            |           | KVV | n/yea |        | /n/year |        |        | 1640.22      | (211)          |
| Space heati                                                   | ng fuel               | used m     | ain syste   | m 2        |            |            |           |     |       |        |         |        |        | 1049.23      | (211)          |
| Space heati                                                   | ng fuel               | used se    | condary     |            |            |            |           |     |       |        |         |        |        | 0            | (215)          |
| Water heati                                                   | ing fuel              | used, se   | condury     |            |            |            |           |     |       |        |         |        |        | 0<br>2025 52 | (215)          |
| Electricity fo                                                | or insta              | ntaneou    | is electric | shower     | (s)        |            |           |     |       |        |         |        |        | 2055.55      | (219)          |
| Space coolir                                                  | ng fuel i             | used       |             | Shower     |            |            |           |     |       |        |         |        |        | 0            | (04a)<br>(221) |
| Electricity fo                                                | or pumi               | os, fans i | and elect   | ric keep-  | hot        |            |           |     |       |        |         |        |        | 0            | (221)          |
| Mechanical                                                    | vent fa               | ns - bala  | anced. ex   | tract or r | ositive ir | nout from  | n outside |     | 0     |        | 0       |        |        | 0            | (2202)         |
| warm air he                                                   | eating s              | vstem fa   | ins         |            |            | iparinon   | i outside |     | 0     |        | 0       |        |        | 0            | (230a)         |
| Heating circ                                                  | ulation               | pump o     | or water r  | oump wit   | hin warm   | h air heat | ing unit  |     |       |        |         |        |        | 11           | (2300)         |
| Oil boiler au                                                 | ixiliarv              | (oil pum   | p. flue fa  | n. etc: ex | cludes ci  | rculation  | (amua     |     |       |        |         |        |        | 41           | (230d)         |
| Gas boiler a                                                  | uxiliarv              | (flue fa   | n. etc: ex  | cludes ci  | rculation  | pump)      | pp)       |     |       |        |         |        |        | 45           | (230u)         |
| Maintaining electric keep-hot facility for gas combi boiler   |                       |            |             |            |            |            |           |     |       | <br>0  | (230f)  |        |        |              |                |
| Pump for solar water heating                                  |                       |            |             |            |            |            |           |     |       | 0      | (230g)  |        |        |              |                |
| Pump for st                                                   | orage V               | WWHRS      | 0           |            |            |            |           |     |       |        |         |        |        | 0            | (230h)         |
| Total electri                                                 | icity for             | the abo    | ove         |            |            |            |           |     |       |        |         |        |        | 86           | (231)          |
| Electricity fo                                                | <i>.</i><br>or lighti | ng         |             |            |            |            |           |     |       |        |         |        |        | 183 18       | (232)          |
| /                                                             | 5                     | 0          |             |            |            |            |           |     |       |        |         |        |        | 100.10       | (232)          |





| Energy s     | aving/ge                                                                                                                                                                       | neration          | technol           | ogies (Ap         | pendices         | M, N) - E      | nergy use         | ed in dwe   | elling |          |      |      |         |        |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|-------------------|------------------|----------------|-------------------|-------------|--------|----------|------|------|---------|--------|
| Electricit   | y genera                                                                                                                                                                       | ited by P         | Vs (Appe          | ndix M)           | (negative        | quantity       | )                 |             |        |          |      |      |         |        |
|              | 2.74                                                                                                                                                                           | 4.39              | 7.15              | 9.15              | 10.9             | 10.57          | 10.44             | 9.32        | 7.57   | 5.46     | 3.19 | 2.31 | 83.2    | (233a) |
| Electricit   | y genera                                                                                                                                                                       | ited by v         | vind turb         | ines (App         | endix M)         | (negativ       | e quantit         | y)          |        |          |      |      |         |        |
| Ele etui eit | 0                                                                                                                                                                              | 0                 | 0                 | 0                 | 0                | 0              | 0                 | 0           | 0      | 0        | 0    | 0    | 0       | (234a) |
| Electricit   | y genera                                                                                                                                                                       | ited by n         | iyaro-ele         | ctric gene        | erators          |                |                   |             |        |          |      |      |         |        |
| Electricit   | 0<br>ay used o                                                                                                                                                                 | 0<br>r net ele    | 0<br>ctricity g   | 0<br>enerated     | 0<br>by micro    | 0<br>-CHP      | 0                 | 0           | 0      | 0        | 0    | 0    | 0       | (235a) |
| Energy s     | 0<br>aving/ge                                                                                                                                                                  | 0<br>neration     | 0<br>i technolo   | 0<br>ogies (Ap    | 0<br>pendices    | 0<br>M, N) - E | 0<br>nergy exp    | 0<br>ported | 0      | 0        | 0    | 0    | 0       | (235c) |
| Electricit   | y genera                                                                                                                                                                       | ited by P         | Vs (Appe          | ndix M)           | (negative        | quantity       | )                 |             |        |          |      |      |         |        |
| Electricit   | 0.29<br>ay genera                                                                                                                                                              | 0.64<br>Ited by v | 1.35<br>vind turb | 2.14<br>ines (App | 2.94<br>endix M) | 3<br>(negativ  | 2.96<br>e quantit | 2.46<br>y)  | 1.73   | 0.95     | 0.4  | 0.23 | 19.09   | (233b) |
| Electricit   | 0<br>ay genera                                                                                                                                                                 | 0<br>Ited by h    | 0<br>Iydro-ele    | 0<br>ctric gene   | 0<br>erators     | 0              | 0                 | 0           | 0      | 0        | 0    | 0    | 0       | (234b) |
| Electricit   | 0<br>ay used o                                                                                                                                                                 | 0<br>r net ele    | 0<br>ctricity g   | 0<br>enerated     | 0<br>by micro    | 0<br>-CHP      | 0                 | 0           | 0      | 0        | 0    | 0    | 0       | (235b) |
| Appendi      | 0<br>x Q item                                                                                                                                                                  | 0<br>s: annua     | 0<br>I energy     | 0                 | 0                | 0              | 0                 | 0           | 0      | 0        | 0    | 0    | 0       | (235d) |
| Appendi      | x Q, <itei< td=""><td>m 1 desc</td><td>ription&gt;</td><td></td><td></td><td></td><td></td><td>Fuel</td><td></td><td>kWh/year</td><td></td><td></td><td></td><td></td></itei<> | m 1 desc          | ription>          |                   |                  |                |                   | Fuel        |        | kWh/year |      |      |         |        |
| energy s     | aved                                                                                                                                                                           |                   |                   |                   |                  |                |                   |             |        |          |      |      | 0       | (236a) |
| energy u     | sed                                                                                                                                                                            |                   |                   |                   |                  |                |                   |             |        |          |      |      | 0       | (237a) |
| Total de     | ivered e                                                                                                                                                                       | nergy fo          | r all uses        |                   |                  |                |                   |             |        |          |      |      | 4651.64 |        |

### 10a. Fuel costs – Individual heating systems including micro-CHP

| Fuel required                                                   | kWh/year | Fuel price | Fuel cost £/year |        |
|-----------------------------------------------------------------|----------|------------|------------------|--------|
| Space heating - main system 1 (electric off-peak tariff         |          |            |                  |        |
| High-rate fraction (Table 12a, or Appendix F for electric CPSU) | 0        |            | 60.03            | (240a) |
| Low-rate fraction                                               | 0        |            | 60.03            | (240b) |
| High-rate cost                                                  | 0        |            | 0                | (240c) |
| Low-rate cost                                                   | 0        |            | 0                | (240d) |
| Space heating - main system 1 cost (other fuel)                 | 0        |            | 0                | (240e) |
| Space heating - main system 2 (electric off-peak tariff         |          |            |                  |        |
| High-rate fraction (Table 12a, or Appendix F for electric CPSU) | 0        |            | 60.03            | (241a) |
| Low-rate fraction                                               | 0        |            | 60.03            | (241b) |
| High-rate cost                                                  | 0        |            | 0                | (241c) |
| Low-rate cost                                                   | 0        |            | 0                | (241d) |
| Space heating - main system 2 cost (other fuel)                 | 0        |            | 0                | (241e) |
| Space heating - secondary (electric off-peak tariff)            |          |            |                  |        |
| High-rate fraction (Table 12a, or Appendix F for electric CPSU) | 0        |            | 60.03            | (242a) |





| Low-rate fraction                                                | 0    |          | 60.03  | (242b) |
|------------------------------------------------------------------|------|----------|--------|--------|
| High-rate cost                                                   | 0    |          | 0      | (242c) |
| Low-rate cost                                                    | 0    |          | 0      | (242d) |
| Space heating - secondary cost (other fuel)                      | 0    |          | 0      | (242e) |
| Water heating (electric off-peak tariff)                         |      |          |        |        |
| High-rate fraction (Table 12a, or Appendix F for electric CPSU)  | 0    |          | 0      | (243)  |
| Low-rate fraction                                                | 0    |          | 0      | (242b) |
| High-rate cost                                                   | 0    |          | 0      | (242c) |
| Low-rate cost                                                    | 0    |          | 0      | (242d) |
| Water heating cost (other fuel)                                  | 0    |          | 103.21 | (247)  |
| (for a DHW-only heat network use (342a) or (342b) instead of (24 | 17)  |          |        |        |
| Energy For instantaneous electric shower(s)                      | 0    |          | 0      | (247a) |
| Space cooling                                                    | 0    |          | 0      | (248)  |
| Pumps, fans And electric keep-hot                                | 0    |          | 14.18  | (249)  |
| Energy For lighting                                              | 0    |          | 30.21  | (250)  |
| Additional standing charges                                      | 0    |          | 92     | (251)  |
| Energy saving/generation technologies                            | 0    |          | -14.79 | (252)  |
| Appendix Q, <item 1="" description=""></item>                    | Fuel | kWh/year |        |        |
| energy saved Or generated                                        | 0    |          | 0      | (253)  |
| energy used                                                      | 0    |          | 0      | (254)  |
| Total energy cost                                                | 0    |          | 284.84 | (255)  |
| 11a. SAP rating – Individual heating systems including micro-CHP |      |          |        |        |
| Energy cost deflator                                             | 0    |          | 0      | (256)  |
| Energy cost factor (ECF)                                         | 0    |          | 0      | (257)  |
| SAP rating                                                       | 0    |          | 0      | (258)  |
|                                                                  |      |          |        |        |

| 11a. SAP rating – Individual heating systems including micro-CHP    |       |       |
|---------------------------------------------------------------------|-------|-------|
| Energy cost deflator                                                | 0.36  | (256) |
| Energy cost factor (ECF)                                            | 0.83  | (257) |
| SAP rating                                                          | 86.56 | (258) |
| 12a. CO2 emissions – Individual heating systems including micro-CHP |       |       |

| Energy                                      | Emission factor | Emissions   |        |
|---------------------------------------------|-----------------|-------------|--------|
| KWh/year                                    | kg              | kg CO2/year |        |
| Space heating - main system 1               |                 | 346.34      | (261)  |
| Space heating - main system 2               |                 | 0           | (262)  |
| Space heating - secondary                   |                 | 0           | (263)  |
| Energy for water heating                    |                 | 595.46      | (264)  |
| Energy for instantaneous electric shower(s) |                 | 0           | (264a) |



Page 9



| Space and water heating                       |   | 941.8  | (265)  |
|-----------------------------------------------|---|--------|--------|
| Space cooling                                 |   | 0      | (266)  |
| Electricity for pumps, fans and electric keep |   | 11.93  | (267)  |
| Electricity for lighting                      |   | 26.44  | (268)  |
| energy saved or generated                     | 0 | -13.36 | (269b) |
| Appendix Q items                              |   |        |        |
| energy saved                                  | 0 | 0      |        |
| energy used                                   | 0 | 0      |        |
| energy saved                                  | 0 | 0      | (270b) |
| energy used                                   |   | 0      | (271b) |
| Total CO2, kg/year                            |   | 966.8  | (272)  |
| Dwelling CO2 Emission Rate                    |   | 12.29  | (273)  |
| El rating                                     |   | 90     | (274)  |

### 13a. Primary Energy – Individual heating systems including micro-CHP

|                                               | Energy   | Emission factor | Emissionsr  |        |
|-----------------------------------------------|----------|-----------------|-------------|--------|
|                                               | KWh/year | kg              | kg CO2/year |        |
| Space heating - main system 1                 |          | C C             | 1863.63     | (275)  |
| Space heating - main system 2                 |          |                 | 0           | (276)  |
| Space heating - secondary                     |          |                 | 0           | (277)  |
| Energy for water heating                      |          |                 | 3204.14     | (278)  |
| Energy for instantaneous electric shower(s)   |          |                 | 0           | (278a) |
| Space and water heating                       |          |                 | 5067.77     | (279)  |
| Space cooling                                 |          |                 | 0           | (280)  |
| Electricity for pumps, fans and electric keep |          |                 | 130.1       | (281)  |
| Electricity for lighting                      |          |                 | 280.97      | (282)  |
| energy saved or generated                     | 0        |                 | -132.51     |        |
| Appendix Q items                              |          |                 |             |        |
| energy saved                                  | 0        |                 | 0           |        |
| energy used                                   | 0        |                 | 0           |        |
| energy saved                                  | 0        |                 | 0           | (284b) |
| energy used                                   |          |                 | 0           | (285b) |
| Total PE, kWh/year                            |          |                 | 5346.33     | (286)  |
| Dwelling PE Rate                              |          |                 | 67.98       | (287)  |
|                                               |          |                 |             |        |





Dwelling Reference: Dwelling Type: 2-4 Harrow Road London W2 1XJ K\_12\_01 New Dwelling Design Stage

## **BE LEAN**

| 1. Overall dwelling dimensions                          |             |               |         |                         |                       |
|---------------------------------------------------------|-------------|---------------|---------|-------------------------|-----------------------|
|                                                         | Area(m²)    | Av. Height(m) |         | Volume(m³)              |                       |
| Ground Floor<br>Total floor area TFA<br>Dwelling volume | 78.64 ( 1a) | x 2.5         | (2a) =  | 196.6<br>78.64<br>196.6 | ( 3a)<br>( 4)<br>( 5) |
| 2. Ventilation Rate                                     |             |               |         |                         |                       |
| Chimneys/Flues                                          | 0           | x 80 =        |         | 0                       | (6a)                  |
| Open chimneys                                           | 0           | x 20 =        |         | 0                       | (6b)                  |
| Chimneys / flues attached to closed fire                | 0           | x 10 =        |         | 0                       | (6c)                  |
| Flues attached to solid fuel boiler                     | 0           | x 20 =        |         | 0                       | (6d)                  |
| Flues attached to other heater                          | 0           | x 35 =        |         | 0                       | (6e)                  |
| Number of blocked chimneys                              | 0           | x 20 =        |         | 0                       | (6f)                  |
| Number of intermittent extract fans                     | 0           | x 10 =        |         | 0                       | (31)<br>(7a)          |
| Number of passive vents                                 | 0           | x 10 =        |         | 0                       | (7 c)                 |
| Number of flueless gas fires                            | 0           | x 40 =        |         | 0                       | (7c)                  |
|                                                         | 0           | Air changes p | er hour | 0                       | (70)                  |
| Number of storeys in the dwelling (ns)                  |             |               | 0       | 0                       | (8)                   |
| Infiltration due to chimneys, flues, fans, PSVs, etc    |             |               | 0       | 0                       | (9)                   |
| Additional infiltration                                 |             |               | 0       | 0                       | (10)                  |
| Structural infiltration                                 |             |               | 0       | 0                       | (11)                  |
| Suspended wooden ground floor                           |             |               | 0       | 0                       | (12)                  |
| No draught lobby                                        |             |               | 0       | 0                       | (13)                  |
| Percentage of windows and doors draught proofed         |             |               | 0       | 0                       | (14)                  |
| Infiltration rate                                       |             |               | 0       | 0                       | (15)                  |
| Air nermeability value $\Delta P50 \ (m^3/h/m^2)$       |             |               | 0       | 0                       | (16)                  |
| Air permeability value, AP4, $(m^3/h/m^2)$              |             |               | 5<br>0  | 5<br>N                  | (17)<br>(17a)         |
| Air permeability value)                                 |             |               | 0.15    | 0.15                    | (18)                  |
| Number of sides on which dwelling is sheltered          |             |               | 2       | 2                       | (19)                  |
| Shelter factor                                          |             |               |         | 0.85                    | (20)                  |





| Infiltratio                                       | on rate in                               | corporati           | ing shelte         | er factor         |                    |                   |                |              |      |      |      |      | 0.13             | (21)                    |  |
|---------------------------------------------------|------------------------------------------|---------------------|--------------------|-------------------|--------------------|-------------------|----------------|--------------|------|------|------|------|------------------|-------------------------|--|
| Infiltration rate modified for monthly wind speed |                                          |                     |                    |                   |                    |                   |                |              |      |      |      |      |                  |                         |  |
|                                                   | Jan                                      | Feb                 | Mar                | Apr               | May                | Jun               | Jul            | Aug          | Sep  | Oct  | Nov  | Dec  | Total            | (22)                    |  |
| Monthly                                           | Monthly average wind speed from Table U2 |                     |                    |                   |                    |                   |                |              |      |      |      |      |                  |                         |  |
| Wind Fac                                          | 5.1<br>ctor                              | 5                   | 4.9                | 4.4               | 4.3                | 3.8               | 3.8            | 3.7          | 4    | 4.3  | 4.5  | 4.7  | 52.5             | (22)                    |  |
| Adjusted                                          | 1.28<br>infiltratio                      | 1.25<br>on rate (a  | 1.23<br>allowing f | 1.1<br>or shelte  | 1.08<br>r and wir  | 0.95<br>nd speed) | 0.95           | 0.93         | 1    | 1.08 | 1.13 | 1.18 | 13.13            | (22a)                   |  |
| Calculate                                         | 0.16<br>effective                        | 0.16<br>e air chan  | 0.16<br>Ige rate f | 0.14<br>or the ap | 0.14<br>plicable d | 0.12<br>case:     | 0.12           | 0.12         | 0.13 | 0.14 | 0.14 | 0.15 | 1.67             | (22b)                   |  |
| a) If bala                                        | nced mec                                 | chanical v          | ventilatio         | n with he         | at recove          | ery (MVH          | IR)            |              |      |      |      |      | 0.5<br>0.5<br>44 | (23a)<br>(23b)<br>(23c) |  |
| b) If bala                                        | 0.44<br>nced med                         | 0.44<br>chanical v  | 0.44<br>ventilatio | 0.42<br>n withou  | 0.42<br>t heat ree | 0.4<br>covery (N  | 0.4<br>1V)     | 0.4          | 0.41 | 0.42 | 0.42 | 0.43 |                  | (24a)                   |  |
| c) If who                                         | 0<br>le house (                          | 0<br>extract ve     | 0<br>entilation    | 0<br>i or positi  | 0<br>ive input     | 0<br>ventilatio   | 0<br>on from c | 0<br>outside | 0    | 0    | 0    | 0    |                  | (24b)                   |  |
| d) lf natu                                        | 0<br>Iral ventil                         | 0<br>ation or v     | 0<br>whole ho      | 0<br>use posit    | 0<br>ive input     | 0<br>ventilati    | 0<br>on from l | 0<br>oft     | 0    | 0    | 0    | 0    |                  | (24c)                   |  |
| Effective                                         | 0<br>air chang                           | 0<br>ge rate        | 0                  | 0                 | 0                  | 0                 | 0              | 0            | 0    | 0    | 0    | 0    |                  | (24d)                   |  |
| Effective                                         | 0.44<br>air chang                        | 0.44<br>ge rate fro | 0.44<br>om PCDB    | 0.42              | 0.42               | 0.4               | 0.4            | 0.4          | 0.41 | 0.42 | 0.42 | 0.43 |                  | (25)                    |  |
|                                                   | 0.44                                     | 0.44                | 0.44               | 0.42              | 0.42               | 0.4               | 0.4            | 0.4          | 0.41 | 0.42 | 0.42 | 0.43 |                  | (25)                    |  |

### 3. Heat losses and heat loss parameter

| Items in the table    | below are to       | be expanded as n | ecessary to allow | for all different ty | pes of element e | .g. 4 wall types.  | The k -va | alue          |       |
|-----------------------|--------------------|------------------|-------------------|----------------------|------------------|--------------------|-----------|---------------|-------|
| ELEMENT<br>Solid door | Gross<br>area (m²) | Openings<br>m²   | Net Area<br>A ,m² | U-value<br>W/m2K     | A X U<br>(W/K)   | k-value<br>kJ/m²∙K | 0         | A X k<br>kJ/K | (26)  |
| Semi-glazed door      |                    |                  |                   |                      |                  |                    | 0         |               | (26a) |
| Window                |                    |                  |                   |                      |                  |                    | 15.95     |               | (27)  |
| Roof window           |                    |                  |                   |                      |                  |                    | 0         |               | (27a) |
| Basement floor        |                    |                  |                   | 0                    |                  |                    | 0         |               | (28)  |
| Ground floor          |                    |                  |                   | 0                    |                  |                    | 0         |               | (28a) |
| Exposed floor         |                    |                  |                   | 0                    |                  |                    | 0         |               | (28b) |
| Basement wall         |                    |                  |                   | 0                    |                  |                    | 0         |               | (29)  |
| External wall         |                    |                  |                   | 4206.64              |                  |                    | 17.7      |               | (29a) |
| Roof                  |                    |                  |                   | 0                    |                  |                    | 0         |               | (30)  |







| Total are                                                                                                | ea of exte         | rnal elen            | nents ∑A,          | m²                  |                     |                     |                   |                   |           |         |       |       | 54.85    | (31)          |
|----------------------------------------------------------------------------------------------------------|--------------------|----------------------|--------------------|---------------------|---------------------|---------------------|-------------------|-------------------|-----------|---------|-------|-------|----------|---------------|
| Party Wall                                                                                               |                    |                      |                    |                     |                     |                     |                   |                   |           |         |       |       | 0        | (32)          |
| Party floor                                                                                              |                    |                      |                    |                     |                     |                     |                   |                   |           |         |       |       | 6291.2   | (32a)         |
| Party ce                                                                                                 | iling              |                      |                    |                     |                     |                     |                   |                   |           |         |       |       | 7864     | (32b)         |
| Internal wall **                                                                                         |                    |                      |                    |                     |                     |                     |                   |                   |           |         |       |       | 0        | (33c)         |
| Internal floor                                                                                           |                    |                      |                    |                     |                     |                     |                   |                   |           |         |       |       | 0        | (32d)         |
| Internal ceiling floor                                                                                   |                    |                      |                    |                     |                     |                     |                   |                   |           |         |       |       |          | (32e)         |
| Fabric heat loss, W/K = $\sum$ (A x U)                                                                   |                    |                      |                    |                     |                     |                     |                   |                   |           |         |       |       | 33.65    | (33)          |
| Heat cap                                                                                                 | pacity Cm          | = ∑(A x k            | < )                |                     |                     |                     |                   |                   |           |         |       |       | 25189.64 | (34)          |
| Thermal                                                                                                  | mass pa            | rameter (            | TMP = Cr           | n ÷ TFA) i          | in kJ/m²K           | C                   |                   |                   |           |         |       |       | 100      | (35)          |
| Linear T                                                                                                 | hermal b           | ridges: ∑            | (L x Ψ) ca         | lculated            | using App           | oendix K            |                   |                   |           |         |       |       | 0.17     | (36)          |
| Point Th                                                                                                 | ermal bri          | dges: ∑χ             | (W/K) if s         | ignificant          | t point th          | ermal br            | idge pres         | ent and v         | values av | ailable |       |       | 0.17     | (36a)         |
| Total fabric heat loss H = $\Sigma(A \times U) + \Sigma(L \times \Psi) + \Sigma\chi$                     |                    |                      |                    |                     |                     |                     |                   |                   |           |         |       |       | 33.82    | (37)          |
| Ventilation heat loss calculated monthly                                                                 |                    |                      |                    |                     |                     |                     |                   |                   |           |         |       |       |          |               |
| 28.71 28.51 28.3 27.26 27.06 26.02 26.02 25.82 26.44 27.06 27.47 27.89<br>Heat transfer coefficient, W/K |                    |                      |                    |                     |                     |                     |                   |                   |           |         |       | (38)  |          |               |
| Heat los                                                                                                 | 62.54<br>s parame  | 62.33<br>ter (HLP)   | 62.12<br>, W/m²K   | 61.09               | 60.88               | 59.85               | 59.85             | 59.64             | 60.26     | 60.88   | 61.3  | 61.71 |          | (39)          |
| Number                                                                                                   | 0.8<br>of days i   | 0.79<br>n month      | 0.79<br>(Table 1a  | 0.78<br>)           | 0.77                | 0.76                | 0.76              | 0.76              | 0.77      | 0.77    | 0.78  | 0.78  |          | (40)          |
|                                                                                                          | 31                 | 28                   | 31                 | 30                  | 31                  | 30                  | 31                | 31                | 30        | 31      | 30    | 31    |          | (41)          |
|                                                                                                          |                    |                      |                    |                     |                     |                     |                   |                   |           |         |       |       |          |               |
| 4. Wa                                                                                                    | ater heat          | ing ener             | rgy requi          | rement              |                     |                     |                   |                   |           |         |       |       |          |               |
| Assume                                                                                                   | d occupai          | ncy, N               |                    |                     |                     |                     |                   |                   |           |         |       |       | 2.44     | (42)          |
| Hot wat                                                                                                  | er usage           | in litres p          | er day fo          | r mixer sl          | nowers, \           | /d,showe            | er (from A        | Appendix          | J)        |         |       |       |          |               |
| Hot wat                                                                                                  | 0<br>er usage      | 0<br>in litres p     | 0<br>er day fo     | 0<br>r baths, V     | 0<br>/d,bath (f     | 0<br>rom App        | 0<br>endix J)     | 0                 | 0         | 0       | 0     | 0     |          | (42a)         |
| Hot wat                                                                                                  | 75.03<br>er usage  | 73.92<br>in litres p | 72.35<br>er day fo | 69.45<br>r other us | 67.29<br>ses, Vd,ot | 64.89<br>ther (fror | 63.59<br>m Appen  | 65.15<br>dix J)   | 66.84     | 69.41   | 72.37 | 74.78 |          | (42b)         |
| Annual a                                                                                                 | 39.58<br>average h | 38.14<br>ot water    | 36.7<br>usage in   | 35.26<br>litres per | 33.83<br>day Vd,a   | 32.39<br>average (1 | 32.39<br>from App | 33.83<br>endix J) | 35.26     | 36.7    | 38.14 | 39.58 | 105.55   | (42c)<br>(43) |

Hot water usage in litres per day for each month Vd,m = (42a) + (42b) + (42c)

114.61 112.06 109.05 104.72 101.11 97.27 95.97 98.97 102.11 106.12 110.51 114.36 1266.87 (44) Energy content of hot water used =  $4.18 \times Vd$ , m x nm x DTm /  $3600 \times Wh/month$  (from Appendix J) 181.52 159.57 167.61 143.36 136.12 119.61 116.07 122.55 125.91 144 157.44 179.06 1752.82 (45) Distribution loss  $(46) = 0.15 \times (45)$ 27.23 23.94 25.14 21.5 20.42 17.94 17.41 18.38 18.89 21.6 23.62 26.86 (46) Storage volume (litres) including any solar or WWHRS storage within same vessel (47) 0 Water storage loss (or HIU loss) 0 (48)

a) If manufacturer's declared loss factor is known (kWh/day):




| Temperature facto             | r from Tab                | le 2b                |                    |                      |                      |                      |                      |                      |                     |                      |                          | 0             | (49)  |
|-------------------------------|---------------------------|----------------------|--------------------|----------------------|----------------------|----------------------|----------------------|----------------------|---------------------|----------------------|--------------------------|---------------|-------|
| Energy lost from w            | ater storag               | ge, kWh              | n/day (48          | s) x (49) =          | =                    |                      |                      |                      |                     |                      |                          | 0             | (50)  |
| b) If manufacturer'           | s declared                | loss fac             | ctor is no         | ot known             | :                    |                      |                      |                      |                     |                      |                          |               |       |
| Hot water storage             | loss factor               | from Ta              | able 2 (k          | Wh/litre             | /day)                |                      |                      |                      |                     |                      |                          | 0             | (51)  |
| Volume factor fron            | n Table 2a                |                      |                    |                      |                      |                      |                      |                      |                     |                      |                          | 0             | (52)  |
| Temperature facto             | r from Tab                | le 2b                |                    |                      |                      |                      |                      |                      |                     |                      |                          | 0             | (53)  |
| Energy lost from w            | ater storag               | ge, kWh              | n/day              |                      |                      |                      |                      |                      |                     |                      |                          | 0             | (54)  |
| Enter (50) or (54) ir         | n (55)                    |                      |                    |                      |                      |                      |                      |                      |                     |                      |                          | 0             | (55)  |
| Water storage (or I           | HIU) loss ca              | alculate             | ed for eac         | ch month             | า (56) = (5          | 55) × (41)           |                      |                      |                     |                      |                          |               |       |
| 0<br>If the vessel contai     | 0 0<br>ns dedicate        | ed solar             | 0<br>r storage     | 0<br>or dedic        | 0<br>Sted W/W        | 0<br>VHRS stor       | 0                    | 0                    | 0                   | 0                    | 0                        |               | (56)  |
| $(57)m = (56)m \square [(4)]$ | 17) – Vsl ÷               | eu solai<br>(47) وار | se (57)m           | = (56)m              |                      | 11113 3101           | age,                 |                      |                     |                      |                          |               |       |
| where Vs is Vww fr            | rom Appen                 | ndix G3 (            | or (H12)           | from Ap              | pendix H             | (as appli            | cable).              |                      |                     |                      |                          |               |       |
| 0                             | 0 0                       |                      | 0                  | 0                    | 0                    | 0                    | 0                    | 0                    | 0                   | 0                    | 0                        |               | (57)  |
| Primary circuit loss          | for each n                | nonth fi             | rom Tab            | le 3                 |                      |                      |                      |                      |                     |                      |                          |               |       |
| modified by factor            | from Table                | e H4 if t            | here is s          | olar wate            | er heatin            | g and a c            | ylinder th           | nermosta             | t, althou           | gh not foi           | r DHW-only he            | eat netwo     | rks)  |
| 0<br>Combi loss for each      | 0        0<br>h month fr  | om Tab               | 0<br>le 3a, 3b     | 0<br>or 3c (e        | 0<br>nter 0 if r     | 0<br>not a com       | 0<br>nbi boiler      | 0<br>)               | 0                   | 0                    | 0                        |               | (59)  |
| 50.96<br>Total heat required  | 46.03 50<br>d for water   | 0.96<br>heating      | 49.32<br>g calcula | 50.96<br>ted for e   | 47.97<br>ach mon     | 48.91<br>th (62) =   | 50.43<br>0.85 × (4   | 49.32<br>5) + (46) · | 50.96<br>+ (57) + ( | 49.32<br>59) + (61)  | 50.96                    |               | (61)  |
| 232.48<br>CWWHRS DHW inp      | 205.6 2:<br>out calculat  | 18.57<br>ted usin    | 192.67<br>Ig Appen | 187.08<br>Idix G (ne | 167.58<br>egative qu | 164.98<br>uantity) ( | 172.98<br>enter 0 if | 175.22<br>no WWF     | 194.96<br>IRS conti | 206.76<br>ribution t | 230.02<br>o water heatii | 2348.9<br>ng) | (62)  |
| 0                             | 0 0                       |                      | 0                  | 0                    | 0                    | 0                    | 0                    | 0                    | 0                   | 0                    | 0                        | 0/            | (63a) |
| PV diverter DHW ir            | nput calcul               | ated us              | ing Appe           | endix G (I           | negative             | quantity)            | (enter 0             | if no PV o           | diverter o          | contribut            | ion)                     |               | (000) |
| 0<br>Solar DUW/ input of      | 0 0                       | cing An              | 0<br>nondiv I      | 0<br>L (pogativ      | 0                    | 0                    | 0<br>r 0 if no c     | 0                    | 0                   | 0                    | 0                        |               | (63b) |
|                               |                           | ising Ap             | pendix F           | i (negati            | ve quanti            | ty) (ente            |                      |                      | noution             | to water             | neating)                 |               |       |
| 0<br>FGHRS DHW input          | 0 0<br>calculated         | using A              | 0<br>Appendix      | 0<br>G (nega         | 0<br>tive quan       | 0<br>ntity) (ent     | 0<br>er 0 if no:     | 0<br>FGHRS c         | 0<br>ontributi      | 0<br>ion to wa       | 0<br>ter heating)        |               | (63C) |
| 0                             | 0 0                       | U                    | 0                  | 0                    | 0                    | 0                    | 0                    | 0                    | 0                   | 0                    | 0                        |               | (63d) |
| Output from water             | heater for                | r each n             | nonth, k           | Wh/mon               | th (64) =            | (62) + (63           | 3a) + (63l           | b) + (63c)           | + (63d)             | 0                    | 0                        |               | (000) |
| 232.48<br>Output from water   | 205.6 2:<br>heater for    | 18.57<br>r each n    | 192.67<br>nonth, k | 187.08<br>Wh/mon     | 167.58<br>th (64) =  | 164.98<br>(62) + (63 | 172.98<br>3a) + (63l | 175.22<br>b) + (63c) | 194.96<br>+ (63d)   | 206.76               | 230.02                   | 2348.9        | (64)  |
| 0<br>Heat gains from wa       | 000<br>oter heatin        | ıg, kWh,             | 0<br>/month (      | 0<br>0.25 x [0.      | 0<br>.85 × (45)      | 0<br>+ (61) +        | 0<br>(64a)] + (      | 0<br>D.8 x [(46)     | 0<br>) + (57) +     | 0<br>(59) ]          | 0                        |               | (64a) |
| 73.1<br>include (57) m in ca  | 64.56 68<br>alculation of | 8.47<br>of (65) r    | 59.99<br>m only if | 58<br>hot wate       | 51.76<br>er store is | 50.82<br>s in the d  | 53.36<br>welling o   | 54.19<br>r hot wat   | 60.62<br>er is fror | 64.68<br>n heat ne   | 72.28<br>twork           |               | (65)  |
|                               |                           |                      |                    |                      |                      |                      |                      |                      |                     |                      |                          |               |       |

#### 5. Internal gains (see Tables 5 and 5a)

Metabolic gains (Table 5), watts

121.83 121.83 121.83 121.83 121.83 121.83 121.83 121.83 121.83 121.83 121.83 121.83 121.83

(66)





Lighting gains (calculated in Appendix L, equation L12 or L12a), also see Table 5

| Appliance  | 109.24<br>es gains ( | 120.94<br>calculate  | 109.24<br>d in Appe | 112.88<br>endix L, e | 109.24<br>quation l | 112.88<br>.16 or L16 | 109.24<br>6a), also s | 109.24<br>see Table | 112.88<br>95 | 109.24 | 112.88 | 109.24 | (67) |
|------------|----------------------|----------------------|---------------------|----------------------|---------------------|----------------------|-----------------------|---------------------|--------------|--------|--------|--------|------|
| Cooking §  | 216.57<br>gains (cal | 218.82<br>culated in | 213.16<br>n Append  | 201.1<br>lix L, equa | 185.88<br>ation L18 | 171.58<br>or L18a)   | 162.02<br>, also see  | 159.78<br>Table 5   | 165.44       | 177.5  | 192.71 | 207.02 | (68) |
| Pumps ar   | 35.18<br>nd fans ga  | 35.18<br>ains (Tabl  | 35.18<br>le 5a)     | 35.18                | 35.18               | 35.18                | 35.18                 | 35.18               | 35.18        | 35.18  | 35.18  | 35.18  | (69) |
| Losses e.; | 0<br>g. evapor       | 0<br>ation (ne       | 0<br>gative va      | 0<br>Ilues) (Ta      | 0<br>ble 5          | 0                    | 0                     | 0                   | 0            | 0      | 0      | 0      | (70) |
| Water he   | -97.46<br>ating gai  | -97.46<br>ns (Table  | -97.46<br>5)        | -97.46               | -97.46              | -97.46               | -97.46                | -97.46              | -97.46       | -97.46 | -97.46 | -97.46 | (71) |
| Total inte | 98.25<br>ernal gain  | 96.08<br>s           | 92.03               | 83.33                | 77.96               | 71.89                | 68.31                 | 71.71               | 75.27        | 81.48  | 89.83  | 97.15  | (72) |
|            | 483.61               | 495.39               | 473.97              | 456.85               | 432.62              | 415.9                | 399.12                | 400.28              | 413.13       | 427.76 | 454.97 | 472.95 | (73) |

6. Solar gains

| Solar gain | s in watt | s, calcula | ated for e | each mon | th      |         |         |        |        |        |        |        |      |
|------------|-----------|------------|------------|----------|---------|---------|---------|--------|--------|--------|--------|--------|------|
|            | 150.54    | 271.72     | 412.41     | 579.11   | 710.82  | 733.03  | 695.34  | 592.9  | 469.48 | 311.26 | 183.09 | 127.03 | (83) |
| Total gain | s – inter | nal and s  | olar (wat  | ts)      |         |         |         |        |        |        |        |        |      |
|            | 634.14    | 767.11     | 886.39     | 1035.97  | 1143.45 | 1148.93 | 1094.46 | 993.17 | 882.62 | 739.02 | 638.07 | 599.98 | (84) |

| 7. Me                | ean inter              | nal tem                | perature                | e (heatin                 | ıg seasoı                | n)                            |                     |                     |                    |                     |                    |              |      |              |
|----------------------|------------------------|------------------------|-------------------------|---------------------------|--------------------------|-------------------------------|---------------------|---------------------|--------------------|---------------------|--------------------|--------------|------|--------------|
| Temper<br>Utilisatio | ature dur<br>on factor | ing heati<br>for gains | ng perioo<br>for living | ds in the l<br>g area, ⊡1 | living are<br>1,m (see 1 | a from Ta<br>Fable 9a)        | able 9, Th          | 11 (°C)             |                    |                     |                    |              | 21   | (85)         |
| Mean in              | 0.92<br>Iternal te     | 0.86<br>mperatur       | 0.78<br>re in livin     | 0.63<br>g area T1         | 0.47<br>(follow s        | 0.33<br>steps 3 ai            | 0.24<br>nd 4 in Ta  | 0.27<br>able 9c)    | 0.45               | 0.71                | 0.87               | 0.93         |      | (86)         |
| Temper               | 19.63<br>ature dur     | 19.98<br>ing heati     | 20.37<br>ng period      | 20.74<br>ds in rest       | 20.92<br>of dwelli       | 20.98<br>ng from <sup>-</sup> | 21<br>Table 9, T    | 20.99<br>h2 (°C)    | 20.95              | 20.68               | 20.11              | 19.57        |      | (87)         |
| Roof                 | 20.26                  | 20.26                  | 20.26                   | 20.27                     | 20.28<br>Utilisatio      | 20.29<br>n factor f           | 20.29<br>or gains f | 20.29<br>for rest o | 20.28<br>f dwellin | 20.28<br>g, ⊡2,m (s | 20.27<br>see Table | 20.27<br>9a) |      | (88)         |
| Roof                 | 0.91                   | 0.85                   | 0.76                    | 0.6                       | 0.44<br>Me               | 0.29<br>ean inter             | 0.2<br>nal temp     | 0.23<br>erature in  | 0.41<br>n the rest | 0.68<br>of dwell    | 0.85<br>ing T2     | 0.92         |      | (89)         |
| Living a             | 18.65<br>rea fractio   | 19.09<br>on            | 19.56                   | 20                        | 20.2                     | 20.27                         | 20.28               | 20.28               | 20.24              | 19.94               | 19.27              | 18.59        | 0.38 | (90)<br>(91) |
| Mean in              | ternal te              | mperatur               | re (for th              | e whole o                 | dwelling)                |                               |                     |                     |                    |                     |                    |              |      |              |
| Adjuste              | 19.02<br>d mean ir     | 19.43<br>nternal te    | 19.86<br>mperatu        | 20.28<br>re:              | 20.47                    | 20.54                         | 20.55               | 20.55               | 20.51              | 20.22               | 19.59              | 18.96        |      | (92)         |
|                      | 19.02                  | 19.43                  | 19.86                   | 20.28                     | 20.47                    | 20.54                         | 20.55               | 20.55               | 20.51              | 20.22               | 19.59              | 18.96        |      | (93)         |

8. Space heating requirement







Utilisation factor for gains,

| Useful ga | 0.89<br>iins, mGn   | 0.83<br>n,W          | 0.74                 | 0.6                 | 0.45                | 0.31            | 0.22        | 0.25   | 0.42   | 0.68   | 0.84   | 0.9    |       | (94)          |
|-----------|---------------------|----------------------|----------------------|---------------------|---------------------|-----------------|-------------|--------|--------|--------|--------|--------|-------|---------------|
| Monthly   | 562.89<br>average ( | 635.66<br>external t | 659.48<br>temperat   | 623.37<br>Sure from | 511.62<br>Table U1  | 351.15          | 235.61      | 246.08 | 372.83 | 499.31 | 533.43 | 539.87 |       | (95)          |
| Heat loss | 4.3<br>rate for     | 4.9<br>mean int      | 6.5<br>ernal ten     | 8.9<br>nperature    | 11.7<br>e           | 14.6            | 16.6        | 16.4   | 14.1   | 10.6   | 7.1    | 4.2    |       | (96)          |
| Space he  | 920.59<br>ating req | 905.46<br>uirement   | 830.24<br>t for each | 695.13<br>month     | 533.9               | 355.55          | 236.58      | 247.65 | 386.05 | 585.54 | 765.34 | 910.77 |       | (97)          |
| Solar spa | 266.13<br>ce heatin | 181.31<br>Ig calcula | 127.05<br>ted using  | 51.67<br>g Append   | 16.58<br>ix H (nega | 0<br>ative qua  | 0<br>ntity) | 0      | 0      | 64.15  | 166.97 | 275.95 |       | (98a)         |
| Space he  | 0<br>ating req      | 0<br>uirement        | 0<br>t for each      | 0<br>month a        | 0<br>after sola     | 0<br>r contribu | 0<br>ution  | 0      | 0      | 0      | 0      | 0      |       | (98b)         |
| Space he  | 266.13<br>ating req | 181.31<br>uirement   | 127.05<br>t in kWh/  | 51.67<br>m²/year    | 16.58               | 0               | 0           | 0      | 0      | 64.15  | 166.97 | 275.95 | 14.62 | (98c)<br>(99) |

| 8c. Sp                 | ace Coc                 | oling requ     | uirement        |                |               |                      |                     |               |   |   |   |   |      |                |
|------------------------|-------------------------|----------------|-----------------|----------------|---------------|----------------------|---------------------|---------------|---|---|---|---|------|----------------|
| Heat loss              | rate,                   |                |                 |                |               |                      |                     |               |   |   |   |   |      |                |
| Utilisatio             | 0<br>n factor           | 0<br>for loss  | 0               | 0              | 0             | 562.57               | 442.88              | 453.27        | 0 | 0 | 0 | 0 |      | (100)          |
| Useful lo              | 0<br>ss, mLm            | 0<br>(watts)   | 0               | 0              | 0             | 0.97                 | 0.98                | 0.97          | 0 | 0 | 0 | 0 |      | (101)          |
| Gains                  | 0                       | 0              | 0               | 0              | 0             | 543.92               | 434.36              | 440.96        | 0 | 0 | 0 | 0 |      | (102)          |
| Space co               | 0<br>oling req          | 0<br>Juirement | 0<br>t for mont | 0<br>th, whole | 0<br>dwelling | 1294.71<br>, continu | 1233.55<br>ous (kWł | 1116.83<br>າ) | 0 | 0 | 0 | 0 |      | (103)<br>(104) |
| Cooled fi<br>Intermitt | 0<br>action<br>ency fac | 0<br>tor       | 0               | 0              | 0             | 540.57               | 594.6               | 502.85        | 0 | 0 | 0 | 0 | 0.81 | (104)<br>(105) |
| Space co               | 0<br>oling req          | 0<br>Juirement | 0<br>t for mont | 0<br>th        | 0             | 0.25                 | 0.25                | 0.25<br>0     | 0 | 0 | 0 | 0 | 0    | (106)          |
| Space co               | 0<br>oling req          | 0<br>Juirement | 0<br>t in kWh/r | 0<br>m²/year   | 0             | 109.36               | 120.3               | 101.73        | 0 | 0 | 0 | 0 | 4.21 | (107)<br>(108) |
| &f Sn                  | aca haa                 | ting roa       | uirement        |                |               |                      |                     |               |   |   |   |   |      |                |

or. space nearing requireme

Fabric Energy Efficiency,

9a. Energy requirements – Individual heating systems including micro-CHP



0

(109)

0



| Fraction                                                                                    | of space l                                                                                       | heat fron  | n second    | ary/supp    | lementar    | y system   | ,         |          | 0           |            |              |        |        | 0       | (201)  |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------|-------------|-------------|-------------|------------|-----------|----------|-------------|------------|--------------|--------|--------|---------|--------|
| Fraction of space heat from main system(s),<br>Fraction of main heating from main system 2, |                                                                                                  |            |             |             |             |            |           |          |             |            |              | 1      | (202)  |         |        |
| Fraction                                                                                    | Fraction of main heating from main system 2,<br>Fraction of total space heat from main system 1, |            |             |             |             |            |           |          |             |            |              |        |        | 0       | (203)  |
| Fraction                                                                                    | of total sp                                                                                      | pace hea   | t from m    | ain syste   | m 1,        |            |           |          |             |            |              |        |        | 1       | (204)  |
| Fraction                                                                                    | of total sp                                                                                      | pace hea   | t from m    | ain syste   | m 2,        |            |           |          |             |            |              |        |        | 0       | (205)  |
| Efficienc                                                                                   | y of main                                                                                        | space he   | eating sys  | stem 1 (ir  | ı %),       |            |           |          |             |            |              |        |        | 89.7    | (206)  |
| Efficienc                                                                                   | y of main                                                                                        | space he   | eating sys  | stem 2 (ir  | ı %),       |            |           |          |             |            |              |        |        | 0       | (207)  |
| Efficienc                                                                                   | y of secor                                                                                       | ndary/su   | pplement    | tary heat   | ing systei  | m, %,      |           |          |             |            |              |        |        | 0       | (208)  |
| Cooling                                                                                     | System Se                                                                                        | asonal E   | nergy Eff   | iciency R   | atio,       |            |           |          | 0           |            |              |        |        | 3.13    | (209)  |
| Space he                                                                                    | eating req                                                                                       | uiremen    | t (calcula  | ted abov    | e) <i>,</i> |            |           |          |             |            |              |        |        |         |        |
|                                                                                             | 0                                                                                                | 0          | 0           | 0           | 0           | 0          | 0         | 0        |             | 0          | 0            | 0      | 0      |         | (210)  |
| Space he                                                                                    | eating fuel                                                                                      | l (main h  | eating sy   | stem 1),    | kWh/mo      | nth        |           |          | 0           |            |              |        |        | 0       |        |
|                                                                                             | 296.69                                                                                           | 202.13     | 141.64      | 57.6        | 18.48       | 0          | 0         | 0        |             | 0          | 71.52        | 186.14 | 307.64 |         | (211)  |
| Space he                                                                                    | eating fuel                                                                                      | l (main h  | eating sy   | stem 2),    | kWh/mo      | nth        |           |          | 0           |            |              |        |        | 0       |        |
|                                                                                             | 0                                                                                                | 0          | 0           | 0           | 0           | 0          | 0         | 0        |             | 0          | 0            | 0      | 0      |         | (213)  |
| Space he                                                                                    | eating fuel                                                                                      | l (second  | lary), kW   | h/month     |             |            |           |          | 0           |            |              |        |        | 0       |        |
|                                                                                             | 0                                                                                                | 0          | 0           | 0           | 0           | 0          | 0         | 0        |             | 0          | 0            | 0      | 0      |         | (215)  |
| Output f                                                                                    | rom wate                                                                                         | r heater)  | ),          |             |             |            |           |          | 0           |            |              |        |        | 80.4    | (216)  |
| Efficienc                                                                                   | y of wate                                                                                        | r heater   |             |             |             |            |           |          |             |            |              |        |        |         |        |
|                                                                                             | 85.11                                                                                            | 84.51      | 83.59       | 82.2        | 81.08       | 80.4       | 80.4      | 80       | .4          | 80.4       | 82.52        | 84.31  | 85.22  |         | (217)  |
| Fuel for                                                                                    | water hea                                                                                        | nting      |             |             |             |            |           |          |             |            |              |        |        |         |        |
|                                                                                             | 273.15                                                                                           | 243.3      | 261.49      | 234.39      | 230.72      | 208.43     | 205.2     | 21       | 5.15        | 217.94     | 236.26       | 245.25 | 269.92 | 2841.19 | (219)  |
| Space Co                                                                                    | ooling                                                                                           |            |             |             |             |            |           |          |             |            |              |        |        |         |        |
| Annual t                                                                                    | 0<br>otals                                                                                       | 0          | 0           | 0           | 0           | 34.94      | 38.43     | 32<br>kW | .5<br>h/yea | 0<br>Ir kW | 0<br>/h/year | 0      | 0      |         | (221)  |
| Space he                                                                                    | eating fuel                                                                                      | l used, m  | iain syste  | m 1         |             |            |           |          |             |            |              |        |        | 1281.83 | (211)  |
| Space he                                                                                    | eating fuel                                                                                      | l used, m  | iain syste  | m 2         |             |            |           |          |             |            |              |        |        | 0       | (213)  |
| Space he                                                                                    | eating fuel                                                                                      | l used, se | econdary    |             |             |            |           |          |             |            |              |        |        | 0       | (215)  |
| Water h                                                                                     | eating fue                                                                                       | l used     |             |             |             |            |           |          |             |            |              |        |        | 2841.19 | (219)  |
| Electricit                                                                                  | y for insta                                                                                      | antaneou   | us electrio | c shower    | (s)         |            |           |          |             |            |              |        |        | 0       | (64a)  |
| Space co                                                                                    | oling fuel                                                                                       | used       |             |             |             |            |           |          |             |            |              |        |        | 105.88  | (221)  |
| Electricit                                                                                  | y for pum                                                                                        | ips, fans  | and elect   | tric keep-  | hot         |            |           |          |             |            |              |        |        |         |        |
| Mechani                                                                                     | ical vent f                                                                                      | ans - bala | anced, ex   | tract or p  | positive ir | nput from  | n outside |          | 0           |            | 0            |        |        | 320.8   | (230a) |
| warm ai                                                                                     | r heating s                                                                                      | system fa  | ans         |             |             |            |           |          |             |            |              |        |        | 0       | (230b) |
| Heating                                                                                     | circulation                                                                                      | n pump o   | or water    | pump wit    | hin warn:   | n air heat | ing unit  |          |             |            |              |        |        | 41      | (230c) |
| Oil boile                                                                                   | r auxiliary                                                                                      | oil pum    | ip, flue fa | in, etc; ex | cludes ci   | rculation  | pump)     |          |             |            |              |        |        | 0       | (230d) |
| Gas boile                                                                                   | er auxiliar                                                                                      | y (flue fa | n, etc; ex  | cludes ci   | rculation   | pump)      |           |          |             |            |              |        |        | 45      | (230e) |
| Maintair                                                                                    | ning electr                                                                                      | ric keep-l | not facilit | y for gas   | combi bo    | oiler      |           |          |             |            |              |        |        | 0       | (230f) |
| Pump fo                                                                                     | r solar wa                                                                                       | iter heati | ing         |             |             |            |           |          |             |            |              |        |        | 0       | (230g) |
| Pump fo                                                                                     | r storage                                                                                        | WWHRS      |             |             |             |            |           |          |             |            |              |        |        | 0       | (230h) |
| Total ele                                                                                   | ctricity fo                                                                                      | r the abo  | ove         |             |             |            |           |          |             |            |              |        |        | 406.8   | (231)  |
| Electricit                                                                                  | y for light                                                                                      | ing        |             |             |             |            |           |          |             |            |              |        |        | 187.42  | (232)  |
|                                                                                             |                                                                                                  |            |             |             |             |            |           |          |             |            |              |        |        |         |        |





| Energy s  | saving/g                                                                                                                                                                      | generatio     | on techno       | ologies (A    | ppendice        | es M, N) -  | Energy ι | used in dw | velling |          |   |   |         |        |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------|---------------|-----------------|-------------|----------|------------|---------|----------|---|---|---------|--------|
| Electrici | ty gene                                                                                                                                                                       | rated by      | PVs (App        | pendix M      | ) (negativ      | ve quantit  | ty)      |            |         |          |   |   |         |        |
|           | 0                                                                                                                                                                             | 0             | 0               | 0             | 0               | 0           | 0        | 0          | 0       | 0        | 0 | 0 | 0       | (233a) |
| Electrici | ty gene                                                                                                                                                                       | rated by      | wind tur        | rbines (Ap    | pendix <b>N</b> | M) (negat   | ive quan | tity)      |         |          |   |   |         |        |
|           | 0                                                                                                                                                                             | 0             | 0               | 0             | 0               | 0           | 0        | 0          | 0       | 0        | 0 | 0 | 0       | (234a) |
| Electrici | ty gene                                                                                                                                                                       | rated by      | hydro-e         | lectric gei   | nerators        |             |          |            |         |          |   |   |         |        |
| Electrici | 0<br>ty used                                                                                                                                                                  | 0<br>or net e | 0<br>lectricity | 0<br>generate | 0<br>d by mic   | 0<br>ro-CHP | 0        | 0          | 0       | 0        | 0 | 0 | 0       | (235a) |
|           | 0                                                                                                                                                                             | 0             | 0               | 0             | 0               | 0           | 0        | 0          | 0       | 0        | 0 | 0 | 0       | (235c) |
| Energy    | saving/g                                                                                                                                                                      | generatio     | on techno       | ologies (A    | ppendice        | es M, N) -  | Energy e | exported   |         |          |   |   |         |        |
| Electrici | ty gene                                                                                                                                                                       | rated by      | PVs (Ap         | pendix M      | ) (negativ      | ve quantit  | ty)      |            |         |          |   |   |         |        |
|           | 0                                                                                                                                                                             | 0             | 0               | 0             | 0               | 0           | 0        | 0          | 0       | 0        | 0 | 0 | 0       | (233b) |
| Electrici | ty gene                                                                                                                                                                       | rated by      | wind tur        | rbines (Ap    | pendix I        | M) (negat   | ive quan | tity)      |         |          |   |   |         |        |
|           | 0                                                                                                                                                                             | 0             | 0               | 0             | 0               | 0           | 0        | 0          | 0       | 0        | 0 | 0 | 0       | (234b) |
| Electrici | ty gene                                                                                                                                                                       | rated by      | hydro-e         | lectric ger   | nerators        |             |          |            |         |          |   |   |         |        |
|           | 0                                                                                                                                                                             | 0             | 0               | 0             | 0               | 0           | 0        | 0          | 0       | 0        | 0 | 0 | 0       | (235b) |
| Electrici | ty used                                                                                                                                                                       | or net e      | lectricity      | generate      | d by mic        | ro-CHP      |          |            |         |          |   |   |         |        |
|           | 0                                                                                                                                                                             | 0             | 0               | 0             | 0               | 0           | 0        | 0          | 0       | 0        | 0 | 0 | 0       | (235d) |
| Append    | ix Q ite                                                                                                                                                                      | ms: annı      | ual energ       | У             |                 |             |          |            |         |          |   |   |         |        |
| Append    | ix Q, <it< td=""><td>em 1 de</td><td>scription</td><td>&gt;</td><td></td><td></td><td></td><td>Fue</td><td>el</td><td>kWh/year</td><td></td><td></td><td></td><td></td></it<> | em 1 de       | scription       | >             |                 |             |          | Fue        | el      | kWh/year |   |   |         |        |
| energy    | saved                                                                                                                                                                         |               |                 |               |                 |             |          |            |         |          |   |   | 0       | (236a) |
| energy    | used                                                                                                                                                                          |               |                 |               |                 |             |          |            |         |          |   |   | 0       | (237a) |
| Total de  | livered                                                                                                                                                                       | energy        | for all use     | es            |                 |             |          |            |         |          |   |   | 4823.13 |        |

#### 10a. Fuel costs – Individual heating systems including micro-CHP

| Fuel required                                                   | kWh/year | Fuel price | Fuel cost £/yea | r      |
|-----------------------------------------------------------------|----------|------------|-----------------|--------|
| Space heating - main system 1 (electric off-peak tariff         |          | ·          |                 |        |
| High-rate fraction (Table 12a, or Appendix F for electric CPSU) | 0        |            | 46.66           | (240a) |
| Low-rate fraction                                               | 0        |            | 46.66           | (240b) |
| High-rate cost                                                  | 0        |            | 0               | (240c) |
| Low-rate cost                                                   | 0        |            | 0               | (240d) |
| Space heating - main system 1 cost (other fuel)                 | 0        |            | 0               | (240e) |
| Space heating - main system 2 (electric off-peak tariff         |          |            |                 |        |
| High-rate fraction (Table 12a, or Appendix F for electric CPSU) | 0        |            | 46.66           | (241a) |
| Low-rate fraction                                               | 0        |            | 46.66           | (241b) |
| High-rate cost                                                  | 0        |            | 0               | (241c) |
| Low-rate cost                                                   | 0        |            | 0               | (241d) |
| Space heating - main system 2 cost (other fuel)                 | 0        |            | 0               | (241e) |
| Space heating - secondary (electric off-peak tariff)            |          |            |                 |        |
| High-rate fraction (Table 12a, or Appendix F for electric CPSU) | 0        |            | 46.66           | (242a) |





| Low-rate fraction                                                 | 0    |          | 46.66  | (242b) |
|-------------------------------------------------------------------|------|----------|--------|--------|
| High-rate cost                                                    | 0    |          | 0      | (242c) |
| Low-rate cost                                                     | 0    |          | 0      | (242d) |
| Space heating - secondary cost (other fuel)                       | 0    |          | 0      | (242e) |
| Water heating (electric off-peak tariff)                          |      |          |        |        |
| High-rate fraction (Table 12a, or Appendix F for electric CPSU)   | 0    |          | 0      | (243)  |
| Low-rate fraction                                                 | 0    |          | 0      | (242b) |
| High-rate cost                                                    | 0    |          | 0      | (242c) |
| Low-rate cost                                                     | 0    |          | 0      | (242d) |
| Water heating cost (other fuel)                                   | 0    |          | 103.42 | (247)  |
| (for a DHW-only heat network use (342a) or (342b) instead of (247 | ')   |          |        |        |
| Energy For instantaneous electric shower(s)                       | 0    |          | 0      | (247a) |
| Space cooling                                                     | 0    |          | 17.46  | (248)  |
| Pumps, fans And electric keep-hot                                 | 0    |          | 67.08  | (249)  |
| Energy For lighting                                               | 0    |          | 30.91  | (250)  |
| Additional standing charges                                       | 0    |          | 184    | (251)  |
| Energy saving/generation technologies                             | 0    |          | 0      | (252)  |
| Appendix Q, <item 1="" description=""></item>                     | Fuel | kWh/year |        |        |
| energy saved Or generated                                         | 0    |          | 0      | (253)  |
| energy used                                                       | 0    |          | 0      | (254)  |
| Total energy cost                                                 | 0    |          | 449.52 | (255)  |
| 11a. SAP rating – Individual heating systems including micro-CHP  |      |          |        |        |
| Energy cost deflator                                              | 0    |          | 0      | (256)  |
| Energy cost factor (ECF)                                          | 0    |          | 0      | (257)  |
| SAP rating                                                        | 0    |          | 0      | (258)  |
|                                                                   |      |          |        |        |

| 11a. SAP rating – Individual heating systems including micro-CHP    |       |       |
|---------------------------------------------------------------------|-------|-------|
| Energy cost deflator                                                | 0.36  | (256) |
| Energy cost factor (ECF)                                            | 1.31  | (257) |
| SAP rating                                                          | 78.78 | (258) |
| 12a. CO2 emissions – Individual heating systems including micro-CHP |       |       |

Energy **Emission factor** Emissions KWh/year kg kg CO2/year Space heating - main system 1 269.18 (261) Space heating - main system 2 0 (262) Space heating - secondary 0 (263) Energy for water heating 386.4 (264) Energy for instantaneous electric shower(s) 0 (264a)





| Space and water heating                       |   | 655.59 | (265)  |
|-----------------------------------------------|---|--------|--------|
| Space cooling                                 |   | 12.1   | (266)  |
| Electricity for pumps, fans and electric keep |   | 56.43  | (267)  |
| Electricity for lighting                      |   | 27.05  | (268)  |
| energy saved or generated                     | 0 | 0      | (269b) |
| Appendix Q items                              |   |        |        |
| energy saved                                  | 0 | 0      |        |
| energy used                                   | 0 | 0      |        |
| energy saved                                  | 0 | 0      | (270b) |
| energy used                                   |   | 0      | (271b) |
| Total CO2, kg/year                            |   | 751.17 | (272)  |
| Dwelling CO2 Emission Rate                    |   | 9.55   | (273)  |
| El rating                                     |   | 92     | (274)  |
|                                               |   |        |        |

#### 13a. Primary Energy – Individual heating systems including micro-CHP

|                                               | Fnerøv   | Emission factor | Emissionsr  |        |
|-----------------------------------------------|----------|-----------------|-------------|--------|
|                                               | KWh/vear | kg              | kg CO2/vear |        |
| Space heating - main system 1                 |          |                 | 1448.47     | (275)  |
| Space heating - main system 2                 |          |                 | 0           | (276)  |
| Space heating - secondary                     |          |                 | 0           | (277)  |
| Energy for water heating                      |          |                 | 4264.63     | (278)  |
| Energy for instantaneous electric shower(s)   |          |                 | 0           | (278a) |
| Space and water heating                       |          |                 | 5713.1      | (279)  |
| Space cooling                                 |          |                 | 150.47      | (280)  |
| Electricity for pumps, fans and electric keep |          |                 | 615.41      | (281)  |
| Electricity for lighting                      |          |                 | 287.48      | (282)  |
| energy saved or generated                     | 0        |                 | 0           |        |
| Appendix Q items                              |          |                 |             |        |
| energy saved                                  | 0        |                 | 0           |        |
| energy used                                   | 0        |                 | 0           |        |
| energy saved                                  | 0        |                 | 0           | (284b) |
| energy used                                   |          |                 | 0           | (285b) |
| Total PE, kWh/year                            |          |                 | 6766.46     | (286)  |
| Dwelling PE Rate                              |          |                 | 86.04       | (287)  |





Dwelling Reference: Dwelling Type: 2-4 Harrow Road London W2 1XJ K\_12\_01 New Dwelling Design Stage

# **BE GREEN**

| 1. Overall dwelling dimensions                          |           |          |                 |                         |                       |
|---------------------------------------------------------|-----------|----------|-----------------|-------------------------|-----------------------|
|                                                         | Area(m²)  | Av. I    | Height(m)       | Volume(m <sup>a</sup>   | ;)                    |
| Ground Floor<br>Total floor area TFA<br>Dwelling volume | 78.64 (1a | i) x 2.5 | 5 (2a) =        | 196.6<br>78.64<br>196.6 | ( 3a)<br>( 4)<br>( 5) |
| 2. Ventilation Rate                                     |           |          |                 |                         |                       |
| Chimneys/Flues                                          | 0         | x 80     | ) =             | 0                       | (6a)                  |
| Open chimneys                                           | 0         | x 20     | =               | 0                       | (6b)                  |
| Chimneys / flues attached to closed fire                | 0         | x 10     | =               | 0                       | (6c)                  |
| Flues attached to solid fuel boiler                     | 0         | x 20     | =               | 0                       | (6d)                  |
| Flues attached to other heater                          | 0         | x 35     | =               | 0                       | (6e)                  |
| Number of blocked chimneys                              | 0         | x 20     | . =             | 0                       | (6c)                  |
| Number of intermittent extract fans                     | 2         | x 10     | . =             | 20                      | (01)<br>(7a)          |
| Number of passive vents                                 | 0         | × 10     | -               | 0                       | (74)<br>(7b)          |
| Number of flueless gas fires                            | 0         | × 10     | _               | 0                       | (70)                  |
|                                                         | 0         | Air c    | hanges per hour | 0                       | (70)                  |
| Number of storeys in the dwelling (ns)                  |           |          | 0.1             | 0.1                     | (8)                   |
| Infiltration due to chimneys, flues, fans, PSVs, etc    |           |          | 0               | 0                       | (9)                   |
| Additional infiltration                                 |           |          | 0               | 0                       | (10)                  |
| Structural infiltration                                 |           |          | 0               | 0                       | (11)                  |
| Suspended wooden ground floor                           |           |          | 0               | 0                       | (12)                  |
| No draught lobby                                        |           |          | 0               | 0                       | (13)                  |
| Percentage of Windows and doors draught proofed         |           |          | 0               | 0                       | (14)                  |
| window initiation                                       |           |          | 0               | 0                       | (15)                  |
| Air permeability value $\Delta P50 \ (m^3/h/m^2)$       |           |          | 0               | 0                       | (16)                  |
| Air permeability value, AP4, $(m^3/h/m^2)$              |           |          | 5               | 5                       | (17)<br>(17)          |
| Air permeability value)                                 |           |          | 0 25            | 0 35                    | (1/d)<br>(12)         |
| Number of sides on which dwelling is sheltered          |           |          | 2               | 2                       | (19)                  |
| Shelter factor                                          |           |          | -               | 0.85                    | (20)                  |





| Infiltration rate incorporating shelter factor 0.3              |                     |                     |                     |                   |                    |                   |                |              |      |      |      | 0.3         | (21)                    |       |
|-----------------------------------------------------------------|---------------------|---------------------|---------------------|-------------------|--------------------|-------------------|----------------|--------------|------|------|------|-------------|-------------------------|-------|
|                                                                 | Jan                 | Feb                 | Mar                 | Apr               | May                | Jun               | Jul            | Aug          | Sep  | Oct  | Nov  | Dec         | Total                   | (22)  |
| Monthly                                                         | average             | wind spee           | ed from 1           | Table U2          |                    |                   |                |              |      |      |      |             |                         |       |
| Wind Fac                                                        | 5.1<br>ctor         | 5                   | 4.9                 | 4.4               | 4.3                | 3.8               | 3.8            | 3.7          | 4    | 4.3  | 4.5  | 4.7         | 52.5                    | (22)  |
| Adjusted                                                        | 1.28<br>infiltratio | 1.25<br>on rate (a  | 1.23<br>allowing f  | 1.1<br>or shelte  | 1.08<br>r and wir  | 0.95<br>nd speed) | 0.95           | 0.93         | 1    | 1.08 | 1.13 | 1.18        | 13.13                   | (22a) |
| Calculate                                                       | 0.38<br>e effective | 0.37<br>e air chan  | 0.37<br>ige rate fo | 0.33<br>or the ap | 0.32<br>plicable c | 0.28<br>case:     | 0.28           | 0.28         | 0.3  | 0.32 | 0.34 | 0.35        | 3.92                    | (22b) |
| a) If balanced mechanical ventilation with heat recovery (MVHR) |                     |                     |                     |                   |                    |                   |                |              |      |      |      | 0<br>0<br>0 | (23a)<br>(23b)<br>(23c) |       |
| b) If bala                                                      | 0<br>nced med       | 0<br>chanical v     | 0<br>ventilatio     | 0<br>n withou     | 0<br>t heat red    | 0<br>covery (N    | 0<br>1∨)       | 0            | 0    | 0    | 0    | 0           |                         | (24a) |
| c) If who                                                       | 0<br>le house e     | 0<br>extract ve     | 0<br>entilation     | 0<br>or positi    | 0<br>ve input      | 0<br>ventilatio   | 0<br>on from o | 0<br>outside | 0    | 0    | 0    | 0           |                         | (24b) |
| d) If natu                                                      | 0<br>Iral ventil    | 0<br>ation or v     | 0<br>whole ho       | 0<br>use posit    | 0<br>ive input     | 0<br>ventilati    | 0<br>on from l | 0<br>oft     | 0    | 0    | 0    | 0           |                         | (24c) |
| Effective                                                       | 0.57<br>air chang   | 0.57<br>ge rate     | 0.57                | 0.55              | 0.55               | 0.54              | 0.54           | 0.54         | 0.54 | 0.55 | 0.56 | 0.56        |                         | (24d) |
| Effective                                                       | 0.57<br>air chang   | 0.57<br>ge rate fro | 0.57<br>om PCDB     | 0.55<br>:         | 0.55               | 0.54              | 0.54           | 0.54         | 0.54 | 0.55 | 0.56 | 0.56        |                         | (25)  |
|                                                                 | 0.57                | 0.57                | 0.57                | 0.55              | 0.55               | 0.54              | 0.54           | 0.54         | 0.54 | 0.55 | 0.56 | 0.56        |                         | (25)  |

#### 3. Heat losses and heat loss parameter

| Items in the table    | below are to       | be expanded as n           | ecessary to allow | for all different ty | pes of element e. | g. 4 wall types.   | The k -v | alue                          |
|-----------------------|--------------------|----------------------------|-------------------|----------------------|-------------------|--------------------|----------|-------------------------------|
| ELEMENT<br>Solid door | Gross<br>area (m²) | Openings<br>m <sup>2</sup> | Net Area<br>A ,m² | U-value<br>W/m2K     | A X U<br>(W/K)    | k-value<br>kJ/m²∙K | 0        | A X k<br>kJ/K <sub>(26)</sub> |
| Semi-glazed door      |                    |                            |                   |                      |                   |                    | 0        | (26a)                         |
| Window                |                    |                            |                   |                      |                   |                    | 23.2     | (27)                          |
| Roof window           |                    |                            |                   |                      |                   |                    | 0        | (27a)                         |
| Basement floor        |                    |                            |                   | 0                    |                   |                    | 0        | (28)                          |
| Ground floor          |                    |                            |                   | 0                    |                   |                    | 0        | (28a)                         |
| Exposed floor         |                    |                            |                   | 0                    |                   |                    | 0        | (28b)                         |
| Basement wall         |                    |                            |                   | 0                    |                   |                    | 0        | (29)                          |
| External wall         |                    |                            |                   | 4206.64              |                   |                    | 6.43     | (29a)                         |
| Roof                  |                    |                            |                   | 0                    |                   |                    | 0        | (30)                          |





| Total a  | rea of exte         | ernal ele           | ments ∑A            | , m²       |            |          |           |          |           |          |       |       | 54.85    | (31)  |
|----------|---------------------|---------------------|---------------------|------------|------------|----------|-----------|----------|-----------|----------|-------|-------|----------|-------|
| Party W  | /all                |                     |                     |            |            |          |           |          |           |          |       |       | 0        | (32)  |
| Party fl | oor                 |                     |                     |            |            |          |           |          |           |          |       |       | 6291.2   | (32a) |
| Party c  | eiling              |                     |                     |            |            |          |           |          |           |          |       |       | 7864     | (32b) |
| Interna  | l wall **           |                     |                     |            |            |          |           |          |           |          |       |       | 0        | (33c) |
| Interna  | l floor             |                     |                     |            |            |          |           |          |           |          |       |       | 0        | (32d) |
| Interna  | l ceiling fl        | oor                 |                     |            |            |          |           |          |           |          |       |       | 0        | (32e) |
| Fabric ł | neat loss,          | W/K = ∑             | (A x U)             |            |            |          |           |          |           |          |       |       | 29.63    | (33)  |
| Heat ca  | pacity Cm           | n = ∑(A x           | k )                 |            |            |          |           |          |           |          |       |       | 25189.64 | (34)  |
| Therma   | ıl mass pa          | rameter             | (TMP = C            | m ÷ TFA)   | in kJ/m²   | к        |           |          |           |          |       |       | 100      | (35)  |
| Linear T | Thermal b           | ridges: ∑           | (L x Ψ) ca          | lculated   | using Ap   | pendix K |           |          |           |          |       |       | 2.63     | (36)  |
| Point T  | hermal br           | idges: ∑x           | ( (W/K) if s        | significar | nt point t | hermal b | ridge pre | sent and | values av | vailable |       |       | 2.63     | (36a) |
| Total fa | bric heat           | loss H =            | ∑(A × U) +          | - Σ(L×Ψ)   | +∑χ        |          |           |          |           |          |       |       | 32.26    | (37)  |
| Ventila  | tion heat           | loss calcu          | ulated mo           | nthly      |            |          |           |          |           |          |       |       |          |       |
| Heat tr  | 37.15<br>ansfer coe | 36.97<br>efficient, | 36.79<br>W/K        | 35.95      | 35.79      | 35.06    | 35.06     | 34.92    | 35.34     | 35.79    | 36.11 | 36.44 |          | (38)  |
| Heat lo  | 69.41<br>ss parame  | 69.23<br>eter (HLP  | 69.05<br>), W/m²K   | 68.2       | 68.05      | 67.31    | 67.31     | 67.18    | 67.59     | 68.05    | 68.36 | 68.7  |          | (39)  |
| Numbe    | 0.88<br>r of days i | 0.88<br>in month    | 0.88<br>i (Table 1a | 0.87<br>a) | 0.87       | 0.86     | 0.86      | 0.85     | 0.86      | 0.87     | 0.87  | 0.87  |          | (40)  |
|          | 31                  | 28                  | 31                  | 30         | 31         | 30       | 31        | 31       | 30        | 31       | 30    | 31    |          | (41)  |
| 4. W     | ater hea            | ting ene            | ergy requ           | irement    | :          |          |           |          |           |          |       |       |          |       |
| Assume   | ed occupa           | ncy, N              |                     |            |            |          |           |          |           |          |       |       | 2.44     | (42)  |

| Assumed                          | occupan               | cy, N                |                     |                       |                     |                    |                   |                 |          |           |        |        | 2.44    | (42)  |
|----------------------------------|-----------------------|----------------------|---------------------|-----------------------|---------------------|--------------------|-------------------|-----------------|----------|-----------|--------|--------|---------|-------|
| Hot wate                         | r usage ir            | n litres po          | er day foi          | r mixer sh            | nowers, V           | d,showe            | r (from A         | ppendix .       | )        |           |        |        |         |       |
|                                  | 0                     | 0                    | 0                   | 0                     | 0                   | 0                  | 0                 | 0               | 0        | 0         | 0      | 0      |         | (42a) |
| Hot wate                         | r usage ir            | n litres po          | er day foi          | <sup>r</sup> baths, V | d,bath (fi          | rom Appe           | endix J)          |                 |          |           |        |        |         |       |
| Hot wate                         | 75.03<br>r usage ir   | 73.92<br>n litres pe | 72.35<br>er day foi | 69.45<br>other us     | 67.29<br>ses, Vd,ot | 64.89<br>her (fron | 63.59<br>n Append | 65.15<br>lix J) | 66.84    | 69.41     | 72.37  | 74.78  |         | (42b) |
|                                  | 39.58                 | 38.14                | 36.7                | 35.26                 | 33.83               | 32.39              | 32.39             | 33.83           | 35.26    | 36.7      | 38.14  | 39.58  |         | (42c) |
| Annual a                         | verage ho             | ot water             | usage in            | litres per            | day Vd,a            | verage (f          | rom App           | endix J)        |          |           |        |        | 105.55  | (43)  |
| Hot wate                         | r usage ir            | n litres po          | er day foi          | r each mo             | onth Vd,n           | า = (42a)          | + (42b) +         | (42c)           |          |           |        |        |         |       |
|                                  | 114.61                | 112.06               | 109.05              | 104.72                | 101.11              | 97.27              | 95.97             | 98.97           | 102.11   | 106.12    | 110.51 | 114.36 | 1266.87 | (44)  |
| Energy co                        | ontent of             | hot wate             | er used =           | 4.18 x Vo             | l,m x nm            | x DTm / 3          | 3600 kW           | h/month         | (from Ap | pendix J) |        |        |         |       |
| Distributi                       | 181.52<br>ion loss (4 | 159.57<br>46) = 0.1  | 167.61<br>5 x (45)  | 143.36                | 136.12              | 119.61             | 116.07            | 122.55          | 125.91   | 144       | 157.44 | 179.06 | 1752.82 | (45)  |
|                                  | 27.23                 | 23.94                | 25.14               | 21.5                  | 20.42               | 17.94              | 17.41             | 18.38           | 18.89    | 21.6      | 23.62  | 26.86  |         | (46)  |
| Storage v                        | olume (li             | tres) incl           | uding an            | y solar or            | WWHRS               | storage            | within sa         | me vesse        | el –     |           |        |        | 0       | (47)  |
| Water storage loss (or HIU loss) |                       |                      |                     |                       |                     |                    |                   |                 |          |           |        |        |         |       |
| a) If man                        | ufacturer             | 's declar            | ed loss fa          | ctor is kn            | iown (kW            | 'h/day):           |                   |                 |          |           |        |        | 0.21    | (48)  |





| Temperature factor from Table 2b                                                                                                                                                                      | 0.54             | (49)  |  |  |  |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------|--|--|--|--|--|--|--|--|--|--|
| Energy lost from water storage, kWh/day (48) x (49) = 0.12                                                                                                                                            |                  |       |  |  |  |  |  |  |  |  |  |  |
| b) If manufacturer's declared loss factor is not known :                                                                                                                                              |                  |       |  |  |  |  |  |  |  |  |  |  |
| Hot water storage loss factor from Table 2 (kWh/litre/day)                                                                                                                                            | 0                | (51)  |  |  |  |  |  |  |  |  |  |  |
| Volume factor from Table 2a                                                                                                                                                                           | 0                | (52)  |  |  |  |  |  |  |  |  |  |  |
| Temperature factor from Table 2b                                                                                                                                                                      | 0                | (53)  |  |  |  |  |  |  |  |  |  |  |
| Energy lost from water storage, kWh/day                                                                                                                                                               | 0                | (54)  |  |  |  |  |  |  |  |  |  |  |
| Enter (50) or (54) in (55)                                                                                                                                                                            | 0.12             | (55)  |  |  |  |  |  |  |  |  |  |  |
| Water storage (or HIU) loss calculated for each month (56) = $(55) \times (41)$                                                                                                                       |                  |       |  |  |  |  |  |  |  |  |  |  |
| 3.57 3.23 3.57 3.46 3.57 3.46 3.57 3.57 3.46 3.57 3.46 3.57 If the vessel contains dedicated solar storage or dedicated WWHRS storage,                                                                |                  | (56)  |  |  |  |  |  |  |  |  |  |  |
| (57)m = (56)m ᠌ [(47) − Vs] ÷ (47), else (57)m = (56)m                                                                                                                                                |                  |       |  |  |  |  |  |  |  |  |  |  |
| where Vs is Vww from Appendix G3 or (H12) from Appendix H (as applicable).                                                                                                                            |                  |       |  |  |  |  |  |  |  |  |  |  |
| 3.57 3.23 3.57 3.46 3.57 3.46 3.57 3.57 3.46 3.57 3.46 3.57 Primary circuit loss for each month from Table 3                                                                                          |                  | (57)  |  |  |  |  |  |  |  |  |  |  |
| modified by factor from Table H4 if there is solar water heating and a cylinder thermostat, although not for DHW-only                                                                                 | heat networ      | ·ks)  |  |  |  |  |  |  |  |  |  |  |
| 23.26 21.01 23.26 22.51 23.26 22.51 23.26 23.26 23.26 22.51 23.26 22.51 23.26 Combi loss for each month from Table 3a, 3b or 3c (enter 0 if not a combi boiler)                                       |                  | (59)  |  |  |  |  |  |  |  |  |  |  |
| 0 $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$                                                                                                                                                                 |                  | (61)  |  |  |  |  |  |  |  |  |  |  |
| 208.35 183.81 194.44 169.32 162.95 145.58 142.91 149.38 151.88 170.83 183.41 205.9<br>CWWHRS DHW input calculated using Appendix G (negative quantity) (enter 0 if no WWHRS contribution to water hea | 2068.76<br>ting) | (62)  |  |  |  |  |  |  |  |  |  |  |
| 0 $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$                                                                                                                                                                 |                  | (63a) |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                       |                  | (626) |  |  |  |  |  |  |  |  |  |  |
| Solar DHW input calculated using Appendix H (negative quantity) (enter 0 if no solar contribution to water heating)                                                                                   |                  | (030) |  |  |  |  |  |  |  |  |  |  |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                 |                  | (63c) |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                       |                  | (63d) |  |  |  |  |  |  |  |  |  |  |
| Output from water heater for each month, kWh/month (64) = (62) + (63a) + (63b) + (63c) + (63d)                                                                                                        |                  | ()    |  |  |  |  |  |  |  |  |  |  |
| 208.35 183.81 194.44 169.32 162.95 145.58 142.91 149.38 151.88 170.83 183.41 205.9 Output from water heater for each month, kWh/month (64) = $(62) + (63a) + (63b) + (63c) + (63d)$                   | 2068.76          | (64)  |  |  |  |  |  |  |  |  |  |  |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                 |                  | (64a) |  |  |  |  |  |  |  |  |  |  |
| 81.82 72.45 77.2 68.44 66.73 60.54 60.06 62.21 62.64 69.35 73.12 81 include (57) m in calculation of (65) m only if hot water store is in the dwelling or hot water is from heat network              |                  | (65)  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                       |                  |       |  |  |  |  |  |  |  |  |  |  |

#### 5. Internal gains (see Tables 5 and 5a)

Metabolic gains (Table 5), watts

121.83 121.83 121.83 121.83 121.83 121.83 121.83 121.83 121.83 121.83 121.83 121.83 121.83

(66)





Lighting gains (calculated in Appendix L, equation L12 or L12a), also see Table 5

| Appliance  | 109.24<br>es gains ( | 120.94<br>calculate  | 109.24<br>d in Appe | 112.88<br>endix L, e | 109.24<br>quation l | 112.88<br>.16 or L16 | 109.24<br>6a), also s | 109.24<br>see Table | 112.88<br>95 | 109.24 | 112.88 | 109.24 | (67) |
|------------|----------------------|----------------------|---------------------|----------------------|---------------------|----------------------|-----------------------|---------------------|--------------|--------|--------|--------|------|
| Cooking §  | 216.57<br>gains (cal | 218.82<br>culated in | 213.16<br>n Append  | 201.1<br>lix L, equa | 185.88<br>ation L18 | 171.58<br>or L18a)   | 162.02<br>, also see  | 159.78<br>Table 5   | 165.44       | 177.5  | 192.71 | 207.02 | (68) |
| Pumps ar   | 35.18<br>nd fans ga  | 35.18<br>ains (Tabl  | 35.18<br>le 5a)     | 35.18                | 35.18               | 35.18                | 35.18                 | 35.18               | 35.18        | 35.18  | 35.18  | 35.18  | (69) |
| Losses e.; | 3<br>g. evapor       | 3<br>ation (ne       | 3<br>gative va      | 3<br>alues) (Ta      | 3<br>ble 5          | 0                    | 0                     | 0                   | 0            | 3      | 3      | 3      | (70) |
| Water he   | -97.46<br>ating gai  | -97.46<br>ns (Table  | -97.46<br>5)        | -97.46               | -97.46              | -97.46               | -97.46                | -97.46              | -97.46       | -97.46 | -97.46 | -97.46 | (71) |
| Total inte | 109.98<br>ernal gain | 107.81<br>s          | 103.76              | 95.06                | 89.69               | 84.09                | 80.73                 | 83.62               | 87           | 93.21  | 101.56 | 108.88 | (72) |
|            | 498.34               | 510.12               | 488.7               | 471.58               | 447.35              | 428.09               | 411.54                | 412.18              | 424.87       | 442.49 | 469.7  | 487.68 | (73) |

6. Solar gains

Solar gains in watts, calculated for each month 131.61 236.45 356.1 495.84 605.23 622.78 591.3 506.34 403.97 270.11 159.87 111.19 (83) Total gains – internal and solar (watts) 629.95 746.57 844.81 967.43 1052.59 1050.88 1002.84 918.52 828.83 712.6 629.58 598.87 (84)

| 7. M      | ean intei            | rnal tem            | perature            | e (heatin           | ng seaso            | n)                            |                     |                  |            |                    |           |       |      |              |
|-----------|----------------------|---------------------|---------------------|---------------------|---------------------|-------------------------------|---------------------|------------------|------------|--------------------|-----------|-------|------|--------------|
| Temper    | ature dur            | ring heati          | ing period          | ds in the           | living are          | a from Ta                     | able 9, Th          | 1 (°C)           |            |                    |           |       | 21   | (85)         |
| Utilisati | on factor            | for gains           | STOP IIVINE         | g area, 🖾           | L,m (see            | lable 9a)                     |                     |                  |            |                    |           |       |      |              |
| Mean ir   | 0.92<br>nternal te   | 0.88<br>mperatui    | 0.82<br>re in livin | 0.69<br>g area T1   | 0.55<br>L (follow s | 0.4<br>steps 3 a              | 0.29<br>nd 4 in Ta  | 0.33<br>ible 9c) | 0.52       | 0.76               | 0.89      | 0.93  |      | (86)         |
| Temper    | 19.35<br>ature dur   | 19.7<br>ring heati  | 20.11<br>ing period | 20.56<br>ds in rest | 20.83<br>of dwelli  | 20.96<br>ng from <sup>·</sup> | 20.99<br>Table 9, T | 20.98<br>h2 (°C) | 20.89      | 20.51              | 19.87     | 19.29 |      | (87)         |
|           | 20.18                | 20.18               | 20.19               | 20.2                | 20.2                | 20.21                         | 20.21               | 20.21            | 20.2       | 20.2               | 20.19     | 20.19 |      | (88)         |
| Root      |                      |                     |                     |                     | Utilisatio          | n factor f                    | or gains f          | for rest o       | fdwellin   | g, <b>⊵2,</b> m (s | see Table | 9a)   |      |              |
|           | 0.92                 | 0.87                | 0.8                 | 0.67                | 0.51                | 0.35                          | 0.24                | 0.27             | 0.47       | 0.72               | 0.87      | 0.93  |      | (89)         |
| Roof      |                      |                     |                     |                     | M                   | ean inter                     | nal temp            | erature in       | n the rest | of dwell           | ing T2    |       |      |              |
| Living a  | 18.26<br>rea fractio | 18.68<br>on         | 19.19               | 19.73               | 20.04               | 20.17                         | 20.2                | 20.19            | 20.11      | 19.69              | 18.92     | 18.19 | 0.38 | (90)<br>(91) |
| Mean ir   | nternal te           | mperatui            | re (for th          | e whole o           | dwelling)           |                               |                     |                  |            |                    |           |       |      |              |
| Adjuste   | 18.67<br>d mean ir   | 19.06<br>nternal te | 19.54<br>emperatu   | 20.04<br>re:        | 20.34               | 20.47                         | 20.5                | 20.49            | 20.41      | 20                 | 19.28     | 18.6  |      | (92)         |
| -         | 18.67                | 19.06               | 19.54               | 20.04               | 20.34               | 20.47                         | 20.5                | 20.49            | 20.41      | 20                 | 19.28     | 18.6  |      | (93)         |

8. Space heating requirement







Utilisation factor for gains,

| Useful ga | 0.9<br>iins, mGm    | 0.85<br>n , W        | 0.78                | 0.66               | 0.51                | 0.36            | 0.26        | 0.29   | 0.48   | 0.72   | 0.85   | 0.91   |       | (94)          |
|-----------|---------------------|----------------------|---------------------|--------------------|---------------------|-----------------|-------------|--------|--------|--------|--------|--------|-------|---------------|
| Monthly   | 564.02<br>average e | 633.05<br>external t | 659.01<br>emperat   | 638.92<br>ure from | 542.01<br>Table U1  | 383.53          | 259.44      | 270.62 | 399.22 | 510.33 | 536.09 | 542.39 |       | (95)          |
| Heat loss | 4.3<br>rate for     | 4.9<br>mean inte     | 6.5<br>ernal tem    | 8.9<br>nperature   | 11.7<br>e           | 14.6            | 16.6        | 16.4   | 14.1   | 10.6   | 7.1    | 4.2    |       | (96)          |
| Space he  | 997.38<br>ating req | 980.56<br>uirement   | 900.11<br>for each  | 760.07<br>month    | 587.75              | 394.87          | 262.23      | 274.86 | 426.36 | 639.79 | 832.52 | 989.58 |       | (97)          |
| Solar spa | 322.41<br>ce heatin | 233.53<br>g calcula  | 179.38<br>ted using | 87.23<br>; Appendi | 34.03<br>ix H (nega | 0<br>ative qua  | 0<br>ntity) | 0      | 0      | 96.32  | 213.43 | 332.71 |       | (98a)         |
| Space he  | 0<br>ating req      | 0<br>uirement        | 0<br>for each       | 0<br>month a       | 0<br>Ifter solar    | 0<br>r contribu | 0<br>ution  | 0      | 0      | 0      | 0      | 0      |       | (98b)         |
| Space he  | 322.41<br>ating req | 233.53<br>uirement   | 179.38<br>: in kWh/ | 87.23<br>m²/year   | 34.03               | 0               | 0           | 0      | 0      | 96.32  | 213.43 | 332.71 | 19.06 | (98c)<br>(99) |

| 8c. Sj               | bace Co                   | oling re        | quirem         | ent            |               |                 |                |           |   |   |   |   |   |                |
|----------------------|---------------------------|-----------------|----------------|----------------|---------------|-----------------|----------------|-----------|---|---|---|---|---|----------------|
| Heat los             | s rate,                   |                 |                |                |               |                 |                |           |   |   |   |   |   |                |
| Utilisati            | 0<br>on facto             | 0<br>r for loss | 0              | 0              | 0             | 0               | 0              | 0         | 0 | 0 | 0 | 0 |   | (100)          |
| Useful lo            | 0<br>oss, mLr             | 0<br>n (watts)  | 0              | 0              | 0             | 0               | 0              | 0         | 0 | 0 | 0 | 0 |   | (101)          |
| Gains                | 0                         | 0               | 0              | 0              | 0             | 0               | 0              | 0         | 0 | 0 | 0 | 0 |   | (102)          |
| Space co             | 0<br>Doling re            | 0<br>equireme   | 0<br>Int for m | 0<br>Ionth, wh | 0<br>ole dwel | 0<br>ling, cont | 0<br>inuous (k | 0<br>(Wh) | 0 | 0 | 0 | 0 |   | (103)<br>(104) |
| Cooled f<br>Intermit | 0<br>fraction<br>tency fa | 0<br>actor      | 0              | 0              | 0             | 0               | 0              | 0         | 0 | 0 | 0 | 0 | 0 | (104)<br>(105) |
| Space co             | 0<br>poling re            | 0<br>equireme   | 0<br>ent for m | 0<br>Ionth     | 0             | 0               | 0              | 0         | 0 | 0 | 0 | 0 | 0 | (106)          |
| Space co             | 0<br>poling re            | 0<br>equireme   | 0<br>ent in kW | 0<br>/h/m²/yea | 0<br>ar       | 0               | 0              | 0         | 0 | 0 | 0 | 0 | 0 | (107)<br>(108) |

8f. Space heating requirement

Fabric Energy Efficiency,

9b. Energy requirements – Heat networks



0

(109)

**TER WORKSHEET** 

0



| Fraction Of space heat from secondary/supplementary heating                           | 0 | (301)  |
|---------------------------------------------------------------------------------------|---|--------|
| Fraction Of space heat from heat network                                              | 0 | (302)  |
| Where the heat network Is Not listed In the PCDB:                                     | 0 |        |
| Fraction of heat from CHP                                                             | 0 | (303a) |
| Fraction of heat from heat source 2                                                   | 0 | (303b) |
| Fraction of heat from heat source 3                                                   | 0 | (303c) |
| Fraction of heat from heat source 4                                                   | 0 | (303d) |
| Fraction of heat from heat source 5                                                   | 0 | (303e) |
| Whether the heat network is listed in the PCDB or not:                                | 0 |        |
| Factor for control and charging method (Table 4c(3)) for space heating                | 0 | (305)  |
| Factor for charging method (Table 4c(3)) for water heating                            | 0 | (305a) |
| Distribution loss factor (Table 12c) for heat network - set to 1 if HN listed in PCDB | 0 | (306)  |
| Annual space heating requirement                                                      |   | ( )    |
| Heat required from heat network                                                       |   |        |
| Where the heat network is not listed in the PCDB:                                     |   |        |
| Space heat from CHP                                                                   | 0 | (307a) |
| Space heat from heat source 2                                                         | 0 | (307b) |
| Space heat from heat source 3                                                         | 0 | (307c) |
| Space heat from heat source 4                                                         | 0 | (307d) |
| Space heat from heat source 5                                                         | 0 | (307e) |
| Whether the heat network is listed in the PCDB or not:                                |   | (302)  |
| Efficiency of secondary/supplementary heating system in %                             | 0 | (308)  |
| Space heating fuel for secondary/supplementary system                                 | 0 | (309)  |
| Water heating                                                                         |   | ( )    |
| Annual water heating requirement                                                      |   |        |
| If DHW from heat network:                                                             |   |        |
| Heat required from heat network                                                       | 0 | (310)  |
| Where the heat network is not listed in the PCDB:                                     |   | ( )    |
| Water heat from CHP                                                                   | 0 | (310a) |
| Water heat from heat source 2                                                         | 0 | (310b) |
| Water heat from heat source 3                                                         | 0 | (310c) |
| Water heat from heat source 4                                                         | 0 | (310d) |
| Water heat from heat source 5                                                         | 0 | (310e) |
| If DHW by immersion or instantaneous heater within dwelling:                          |   | ()     |
| Efficiency of water heater                                                            | 0 | (311)  |
| Water heated by immersion or instantaneous heater                                     | 0 | (312)  |
| Electricity used for instantaneous electric shower(s)                                 | 0 | (312a) |
| Electrical pumping energy as proportion of heat supplied                              | 0 | (313a) |
| Electricity used for heat distribution                                                | 0 | (313)  |
| Cooling System Seasonal Energy Efficiency Ratio                                       | 0 | (314)  |
| Space cooling (if there is a fixed cooling system                                     | 0 | (315)  |
| Electricity for pumps and fans within dwelling                                        | • | (0-0)  |
|                                                                                       |   |        |





| mechar   | ical ve                                 | ntilation · | - balance   | d, extract | t or posit | ive input  | from out  | side       |      |            |   |   | 0               | (330a) |
|----------|-----------------------------------------|-------------|-------------|------------|------------|------------|-----------|------------|------|------------|---|---|-----------------|--------|
| warm a   | /arm air heating system fans            |             |             |            |            |            |           |            |      |            |   |   |                 |        |
| pump f   | Imp for solar water heating             |             |             |            |            |            |           |            |      |            |   |   |                 |        |
| pump f   | mp for storage WWHRS (see section G3.3) |             |             |            |            |            |           |            |      |            |   |   |                 |        |
| electric | ity use                                 | by heat ir  | nterface u  | unit       |            |            |           |            |      |            |   |   | 0               | (330i) |
| Total el | ectricit                                | y for pum   | nps and fa  | ans        |            |            |           |            |      |            |   |   | 0               | (331)  |
| Electric | ty for l                                | ighting (c  | alculated   | l in Appe  | ndix L)    |            |           |            |      |            |   |   | 0               | (332)  |
| Energy   | genera                                  | tion (App   | endixs M    | , negativ  | e quantit  | y) - Ener  | gy used i | n dwelling | g    |            |   |   |                 |        |
| PV       | 0                                       | 0           | 0           | 0          | 0          | 0          | 0         | 0          | 0    | 0          | 0 | 0 | 0               | (333a) |
| Wind     | 0                                       | 0           | 0           | 0          | 0          | 0          | 0         | 0          | 0    | 0          | 0 | 0 | 0               | (334a) |
| Hydro    | 0                                       | 0           | 0           | 0          | 0          | 0          | 0         | 0          | 0    | 0          | 0 | 0 | 0               | (335a) |
| Energy   | genera                                  | tion (App   | endixs M    | l, negativ | e quantit  | :y) - Ener | gy used e | xported    |      |            |   |   |                 |        |
| PV       | 0                                       | 0           | 0           | 0          | 0          | 0          | 0         | 0          | 0    | 0          | 0 | 0 | 0               | (333b) |
| Wind     | 0                                       | 0           | 0           | 0          | 0          | 0          | 0         | 0          | 0    | 0          | 0 | 0 | 0               | (334b) |
| Hydro    | 0                                       | 0           | 0           | 0          | 0          | 0          | 0         | 0          | 0    | 0          | 0 | 0 | 0               | (335b) |
| Append   | ix Q ite                                | ems: annu   | al energy   | y          |            |            |           |            |      |            |   |   | 0               |        |
| energy   | saved                                   |             |             |            |            |            |           |            |      |            |   |   | 0               | (336b) |
| energy   | used                                    |             |             |            |            |            |           |            |      |            |   |   | 0               | (337b) |
| Total de | elivered                                | d energy f  | or all use  | es         |            |            |           |            |      |            |   |   | 0               |        |
| 10b.     | Fuel c                                  | osts – In   | dividual    | heating    | systems    | includir   | ng micro  | -CHP       |      |            |   |   |                 |        |
| Where    | the hea                                 | at networ   | k is not li | sted in th | ne PCDB:   |            |           |            |      |            |   |   |                 |        |
| Fuel red | quired                                  |             |             |            |            |            |           | kWh/       | year | Fuel price | ē |   | Fuel cost £/yea | r      |
| Space h  | eating                                  | from CHF    | 0           |            |            |            |           | 0          |      |            |   |   | 0               | (340a) |
| Space h  | eating                                  | from hea    | t source :  | 2          |            |            |           | 0          |      |            |   |   | 0               | (340b) |

|                                                       | - | ÷ | ( )    |
|-------------------------------------------------------|---|---|--------|
| Space heating from heat source 2                      | 0 | 0 | (340b) |
| Space heating from heat source 3                      | 0 | 0 | (340c) |
| Space heating from heat source 4                      | 0 | 0 | (340d) |
| Space heating from heat source 5                      | 0 | 0 | (340e) |
| Where the heat network is not listed in the PCDB:     |   |   |        |
| Space heating from PCDB heat network                  | 0 | 0 | (340)  |
| Space heating fuel for secondary/supplementary system | 0 | 0 | (341)  |
| If DHW from heat network:                             |   |   | . ,    |
| Where the heat network Is Not listed in the PCDB:     |   |   |        |
| Water heating from CHP                                | 0 | 0 | (342a) |
| Water heating from heat source 2                      | 0 | 0 | (342b) |
| Water heating from heat source 3                      | 0 | 0 | (342c) |
| Water heating from heat source 4                      | 0 | 0 | (342d) |
| Water heating from heat source 5                      | 0 | 0 | (342e) |
| Water heating from PCDB heat network                  |   | 0 | (342)  |
| If water heated by immersion heater:                  |   |   |        |
| High-rate fraction (Table 13)                         | 0 | 0 | (343)  |
|                                                       |   |   |        |





| Low-rate fraction                               | 0 | 0 | (344)  |
|-------------------------------------------------|---|---|--------|
| High-rate cost, or cost for single immersion    | 0 | 0 | (345)  |
| Low-rate cost                                   | 0 | 0 | (346)  |
| If water heated by instantaneous water heater   | 0 | 0 | (347)  |
| Energy used by instantaneous electric shower(s) | 0 | 0 | (347a) |
| Space cooling                                   | 0 | 0 | (348)  |
| Pumps and fans                                  | 0 | 0 | (349)  |
| Electricity for lighting                        | 0 | 0 | (350)  |
| Additional standing charges (Table 12)          |   | 0 | (351)  |
| energy saved or generated                       |   | 0 |        |
| energy saved                                    | 0 | 0 | (353)  |
| energy used                                     | 0 | 0 | (354)  |
| Total energy cost                               | 0 | 0 | (355)  |
|                                                 |   |   |        |

| 11b. SAP SAP rating – Heat networks             |   |       |
|-------------------------------------------------|---|-------|
| Energy cost deflator                            | 0 | (356) |
| Energy cost factor (ECF)                        | 0 | (357) |
| SAP rating                                      | 0 | (358) |
| 12b. CO2 emissions – Individual heating systems |   |       |

Where the heat network is not listed in the PCDB CO2 from CHP (space and water heating): Power efficiency of CHP unit (e.g. 25%) Heat efficiency of CHP unit (e.g. 50%)

| Heat eniciency of CHP unit (e.g. 50%)                        |          |                 | 0           | (362)  |
|--------------------------------------------------------------|----------|-----------------|-------------|--------|
|                                                              | Energy   | Emission factor | Emissions   |        |
|                                                              | KWh/year | kg              | kg CO2/year |        |
| Space heating from CHP                                       |          |                 | 0           | (363)  |
| less credit emissions for electricity                        |          |                 | 0           | (364)  |
| Water heated by CHP                                          |          |                 | 0           | (365)  |
| less credit emissions for electricity                        |          |                 | 0           | (366)  |
| CO2 from other sources of space and water heating (not CHP): |          |                 |             |        |
| Efficiency of heat source 2 (%)                              |          |                 | 0           | (367b) |
| Efficiency of heat source 3 (%)                              |          |                 | 0           | (367c) |
| Efficiency of heat source 4 (%)                              |          |                 | 0           | (367d) |
| Efficiency of heat source 5 (%)                              |          |                 | 0           | (367e) |
| CO2 associated with heat source 2                            |          |                 | 0           | (368)  |
| CO2 associated with heat source 3                            |          |                 | 0           | (369)  |
| CO2 associated with heat source 4                            |          |                 | 0           | (370)  |
| CO2 associated with heat source 5                            |          |                 | 0           | (371)  |
|                                                              |          |                 |             |        |



0

(361)



CO2/year

Energy used Emission factor

Where the heat network is listed in the PCDB:

|                                                           | kWh/year    | from PCDB       | kgCO2/year      |         |
|-----------------------------------------------------------|-------------|-----------------|-----------------|---------|
| Space and water heating supplied by heat network          |             |                 | 0               | (371a)  |
| Where the heat network is listed in the PCDB:             | Energy used | Emission factor | CO2/year        |         |
|                                                           | KWh/year    | from PCDB       | kgCO2/year      |         |
| Electrical energy for heat distribution                   |             |                 | 0               | (372)   |
| Total CO2 associated with heat networks                   |             |                 | 0               | (373)   |
| Space heating (secondary)                                 |             |                 | 0               | (374)   |
| Water heating by immersion heater or instantaneous heater |             |                 | 0               | (375)   |
| Energy used by instantaneous electric shower(s)           |             |                 | 0               | (375a)  |
| Total CO2 associated with space and water heating         |             |                 | 0               | (376)   |
| Space cooling                                             |             |                 | 0               | (377)   |
| Electricity for pumps and fans within dwelling            |             |                 | 0               | (378)   |
| Electricity for lighting                                  |             |                 | 0               | (379)   |
| energy saved or generated                                 |             |                 |                 |         |
| energy saved or generated                                 |             |                 | System.Double[] | ] (380) |
| Appendix Q items                                          |             |                 |                 |         |
| energy saved                                              |             |                 | 0               | (381)   |
| energy used                                               |             |                 | 0               | (382)   |
| energy used                                               |             |                 | 0               | (383)   |
| Total CO2, kg/year                                        |             |                 | 0               | (384)   |
| El rating (section 14)                                    |             |                 | 0               | (385)   |
| Overall CO2 factor for heat network                       |             |                 | 0               | (386)   |

#### 13b. Primary Energy – Individual heating systems including micro-CHP

Where the heat network is not listed in the PCDB CO2 from CHP (space and water heating): Power efficiency of CHP unit (e.g. 25%) Heat efficiency of CHP unit (e.g. 50%)

| Heat efficiency of CHP unit (e.g. 50%)                       |          |                 | 0          | (462)  |
|--------------------------------------------------------------|----------|-----------------|------------|--------|
|                                                              | Energy   | Emission factor | CO2/yearr  |        |
|                                                              | kWh/year | from table 12   | kgCO2/year |        |
| Space heating from CHP                                       |          |                 | 0          | (463)  |
| less credit emissions for electricity                        |          |                 | 0          | (464)  |
| Water heated by CHP                                          |          |                 | 0          | (465)  |
| less credit emissions for electricity                        |          |                 | 0          | (466)  |
| CO2 from other sources of space and water heating (not CHP): |          |                 |            |        |
| Efficiency of heat source 2 (%)                              |          |                 | 0          | (467b) |
| Efficiency of heat source 3 (%)                              |          |                 | 0          | (467c) |
| Efficiency of heat source 4 (%)                              |          |                 | 0          | (467d) |
| Efficiency of heat source 5 (%)                              |          |                 | 0          | (467e) |
|                                                              |          |                 |            |        |



0

(461)



| CO2 associated with heat source 2                         |                             | 0          | (468)  |
|-----------------------------------------------------------|-----------------------------|------------|--------|
| CO2 associated with heat source 3                         |                             | 0          | (469)  |
| CO2 associated with heat source 4                         |                             | 0          | (470)  |
| CO2 associated with heat source 5                         |                             | 0          | (471)  |
| Where the heat network is listed in the PCDB:             | Energy used Emission factor | CO2/year   | . ,    |
|                                                           | kWh/year from PCDB          | kgCO2/year |        |
| Space and water heating supplied by heat network          |                             | 0          | (371a) |
|                                                           | Energy Emission factor      | CO2/year   |        |
|                                                           | kWh/year from Table 12      | kgCO2/year |        |
| Electrical energy for heat distribution                   |                             | 0          | (472)  |
| Total CO2 associated with heat networks                   |                             | 0          | (473)  |
| Space heating (secondary)                                 |                             | 0          | (474)  |
| Water heating by immersion heater or instantaneous heater |                             | 0          | (475)  |
| Energy used by instantaneous electric shower(s)           |                             | 0          | (475a) |
| Total CO2 associated with space and water heating         |                             | 0          | (476)  |
| Space cooling                                             |                             | 0          | (477)  |
| Electricity for pumps and fans within dwelling            |                             | 0          | (478)  |
| Electricity for lighting                                  |                             | 0          | (479)  |
| energy saved or generated                                 |                             |            | . ,    |
| energy saved or generated                                 | 0                           | 0          | (480)  |
| Appendix Q items                                          |                             |            | . ,    |
| energy saved                                              | 0                           | 0          | (481)  |
| energy used                                               |                             | 0          | (482)  |
| Total CO2, kg/year                                        |                             | 0          | (383)  |
| Dwelling CO2 Emission Rate                                |                             | 0          | (274)  |
| Overall CO2 factor for heat network                       |                             | 0          | (386)  |
|                                                           |                             |            |        |



### K\_12\_01 DER worksheet BE GREEN

#### (Snapshots taken due to software error)

| 1. Overall d          | welling dim        | ensions                 |                 |                     |              |      |      |            |      |                            |                         |                          |
|-----------------------|--------------------|-------------------------|-----------------|---------------------|--------------|------|------|------------|------|----------------------------|-------------------------|--------------------------|
|                       |                    |                         |                 |                     |              |      |      |            |      |                            |                         |                          |
|                       |                    |                         |                 |                     |              |      | ,    | Area (m²)  |      | Average<br>storey f<br>(m) | e<br>neight             | Volume (m <sup>s</sup> ) |
| Basement              |                    |                         |                 |                     |              |      | 7    | 78.64 (1a) | x    | 2.5 (23                    | a) =                    | 196.6 (3a)               |
| Total floor a         | area TFA           |                         |                 |                     |              |      | 7    | 78.64 (4)  |      |                            |                         |                          |
| Dwelling vo           | lume               |                         |                 |                     |              |      |      |            |      |                            | =                       | 196.6 (5)                |
|                       |                    |                         |                 |                     |              |      |      |            |      |                            |                         |                          |
| 2. Ventilatio         | on Rate            |                         |                 |                     |              |      |      |            |      |                            |                         |                          |
|                       |                    |                         |                 |                     |              |      |      |            |      |                            |                         |                          |
| Number of (           | chimneys / f       | flues:                  |                 |                     |              |      | Tota | l          |      |                            | m <sup>s</sup> per hour |                          |
| - open flues          | 6                  |                         |                 |                     |              |      | 0    | х          | 80   | =                          | 0.0                     | (6a)                     |
| - open chim           | Ineys              | had to closed           |                 |                     |              |      | 0    | X          | 20   | =                          | 0.0                     | (6D)                     |
| fire                  | / nues allac       | ned to closed           | 1               |                     |              |      | 0    | x          | 10   | -                          | 0.0                     | (60)                     |
| - flues attac         | ched to solid      | fuel boiler             |                 |                     |              |      | 0    | х          | 20   | =                          | 0.0                     | (6d)                     |
| - flues attac         | ched to othe       | r heater                |                 |                     |              |      | 0    | х          | 35   | =                          | 0.0                     | (6e)                     |
| Number of I           | blocked chir       | mneys                   |                 |                     |              |      | 0    | х          | 20   | =                          | 0.0                     | (6f)                     |
| Number of i           | intermittent       | extract fans            |                 |                     |              |      | 0    | X          | 10   | =                          | 0.0                     | (7a)                     |
| Number of             | passive ven        | its<br>firee            |                 |                     |              |      | 0    | X          | 10   | =                          | 0.0                     | (7b)                     |
| Number of             | nueless gas        | liles                   |                 |                     |              |      | U    | X          | 40   | -                          | 0.0                     | (70)                     |
|                       |                    |                         |                 |                     |              |      |      |            |      | Air chang                  | ges per hour            | (0)                      |
| Number of s           | storeys in th      | ne dwelling (n:         | s)              |                     |              |      |      |            |      | 0.0                        | 0.0                     | (8)                      |
| Additional in         | nfiltration        | ieys, nues, la          | ns, PSVS, etc   |                     |              |      |      |            |      | 0.0                        | 0.0                     | (9)                      |
| Structural in         | nfiltration        |                         |                 |                     |              |      |      |            |      | 0.0                        | 0.0                     | (10)                     |
| Suspended             | wooden gro         | ound floor              |                 |                     |              |      |      |            |      | 0.0                        | 0.0                     | (12)                     |
| No draught            | lobby              |                         |                 |                     |              |      |      |            |      | 0.0                        | 0.0                     | (13)                     |
| Percentage            | e of windows       | and doors d             | raught proofe   | d                   |              |      |      |            |      | 0.0                        | 0.0                     | (14)                     |
| Window infi           | iltration          |                         |                 |                     |              |      |      |            |      | 0.0                        | 0.0                     | (15)                     |
| Air permod            | ate                |                         | n2)             |                     |              |      |      |            |      | 0.0                        | 0.0                     | (16)                     |
| Air permeat           | bility value, /    | ΔΡ4 (m³/h/m             | 2)              |                     |              |      |      |            |      | 0.0                        | 0.0                     | (17)                     |
| Air permeat           | bility value, /    | м <del>ч</del> , (ш лил | ,               |                     |              |      |      |            |      | 0.15                       | 0.0                     | (174)                    |
| Number of s           | sides on wh        | ich dwelling i          | s sheltered     |                     |              |      |      |            |      | 2.0                        | 2.0                     | (19)                     |
| Shelter fact          | tor                | Ŭ                       |                 |                     |              |      |      |            |      | 0.85                       | 0.85                    | (20)                     |
| Infiltration ra       | ate incorpor       | ating shelter           | factor          |                     |              |      |      |            |      | 0.13                       | 0.13                    | (21)                     |
| Infiltration ra       | ate modified       | d for monthly           | wind speed:     |                     |              |      |      |            |      |                            |                         |                          |
| Monthly ave           | erage wind s       | speed from Ta           | able U2         |                     |              |      |      |            |      |                            |                         |                          |
| Jan                   | Feb                | Mar                     | Apr             | May                 | June         | Jul  | Aug  | Sep        | Oct  | Nov                        | Dec                     | (22)                     |
| 0.1                   | 5.0                | 4.9                     | 4.4             | 4.5                 | 3.0          | 3.0  | 3.7  | 4.0        | 4.5  | 4.5                        | 4.7<br>Total =          | 52.5                     |
| Wind Facto            | 1 05               | 1.00                    |                 | 1.00                | 0.05         | 0.05 | 0.00 | 10         | 1.00 | 1.10                       | 4.40                    |                          |
| 1.28                  | 1.20               | 1.23                    | 1.1             | 1.08                | 0.95         | 0.95 | 0.93 | 1.0        | 1.08 | 1.13                       | 1.18                    | (22a)                    |
| Adjusted int          | filtration rate    | e (allowing for         | shelter and     | wind speed)         |              |      |      |            |      |                            | Total =                 | 13.12                    |
| 0.16                  | 0.16               | 0.16                    | 0.14            | 0.14                | 0.12         | 0.12 | 0.12 | 0.13       | 0.14 | 0.14                       | 0.15                    | (22b)                    |
|                       |                    |                         |                 |                     |              |      |      |            |      |                            | Total =                 | 1.67                     |
| Calculate e           | ffective air c     | hange rate fo           | or the applical | ble case:           |              |      |      |            |      |                            |                         |                          |
|                       |                    | 0                       |                 |                     |              |      |      |            |      | 0.5                        | 0.5                     | (00-)                    |
|                       |                    |                         |                 |                     |              |      |      |            |      | 0.5                        | 0.5                     | (23a)<br>(22b)           |
|                       |                    |                         |                 |                     |              |      |      |            |      | 44.0                       | 44.0                    | (230)<br>(23c)           |
|                       |                    |                         |                 |                     |              |      |      |            |      | 44.0                       | 44.0                    | (200)                    |
| a) If balance<br>0.44 | ed mechani<br>0.44 | cal ventilation<br>0.44 | 0.42            | overy (MVHR<br>0.42 | 0.4          | 0.4  | 0.4  | 0.41       | 0.42 | 0.42                       | 0.43                    | (24a)                    |
| h) If halance         | ed mechani         | cal ventilation         | without best    | recovery (MV        | )            |      |      |            |      | 0.12                       | 5.10                    | (24a)                    |
| 0.0                   | 0.0                | 0.0                     | 0.0             | 0.0                 | 0.0          | 0.0  | 0.0  | 0.0        | 0.0  | 0.0                        | 0.0                     | (24b)                    |
| c) If whole h         | house extra        | ct ventilation          | or positive inp | out ventilation     | from outside |      |      |            |      |                            |                         | . ,                      |
| 0.0                   | 0.0                | 0.0                     | 0.0             | 0.0                 | 0.0          | 0.0  | 0.0  | 0.0        | 0.0  | 0.0                        | 0.0                     | (24c)                    |

d) If natural ventilation or whole house positive input ventilation from loft

| 0.0                                                                              | 0.0              | 0.0           | 0.0            | 0.0             | 0.0           | 0.0            | 0.0         | 0.0           | 0.0            | 0.0            | 0.0     | (24b) |  |
|----------------------------------------------------------------------------------|------------------|---------------|----------------|-----------------|---------------|----------------|-------------|---------------|----------------|----------------|---------|-------|--|
| c) If whole house extract ventilation or positive input ventilation from outside |                  |               |                |                 |               |                |             |               |                |                |         |       |  |
| 0.0                                                                              | 0.0              | 0.0           | 0.0            | 0.0             | 0.0           | 0.0            | 0.0         | 0.0           | 0.0            | 0.0            | 0.0     | (24c) |  |
| d) If natura                                                                     | I ventilation or | whole house   | positive input | ventilation fro | m loft        |                |             |               |                |                |         |       |  |
| 0.0                                                                              | 0.0              | 0.0           | 0.0            | 0.0             | 0.0           | 0.0            | 0.0         | 0.0           | 0.0            | 0.0            | 0.0     | (24d) |  |
| Effective a                                                                      | r change rate    |               |                |                 |               |                |             |               |                |                |         |       |  |
| 0.44                                                                             | 0.44             | 0.44          | 0.42           | 0.42            | 0.4           | 0.4            | 0.4         | 0.41          | 0.42           | 0.42           | 0.43    | (25)  |  |
|                                                                                  |                  |               |                |                 |               |                |             |               |                |                |         | (20)  |  |
| For mecha                                                                        | nical ventilatio | n systems pro | viding variabl | e air change r  | ates, the mon | thly rate held | in the PCDB | or Appendix G | ) data and she | ould instead b | e used: |       |  |
| Effective ei                                                                     | r change rate    |               |                |                 |               |                |             |               |                |                |         |       |  |
| Ellective a                                                                      | r change rate    | TOM PCDB.     |                |                 |               |                |             |               |                |                |         |       |  |
| 0.44                                                                             | 0.44             | 0.44          | 0.42           | 0.42            | 0.4           | 0.4            | 0.4         | 0.41          | 0.42           | 0.42           | 0.43    | (25)  |  |

#### 3. Heat losses and heat loss parameter

Items in the table below are to be expanded as necessary to allow for all different types of element e.g. 4 wall types. The k -value is the heat capacity per unit area, see Table 1h

| Element                |                         |                                  | Gross<br>area, m²         | Openin<br>m ² | gs Net<br>A, i | t area<br>m² | U-value<br>W/m2 K |      | A x U<br>W/K | k-value<br>kJ/m ².K | A x k<br>kJ/K |       |       |
|------------------------|-------------------------|----------------------------------|---------------------------|---------------|----------------|--------------|-------------------|------|--------------|---------------------|---------------|-------|-------|
| Solid door             |                         |                                  |                           |               |                |              |                   |      | 0.0          |                     |               | (26)  |       |
| Semi-glazed            | l door                  |                                  |                           |               |                |              |                   |      | 0.0          |                     |               | (26a) |       |
| Window                 |                         |                                  |                           |               |                |              |                   |      | 15.95        |                     |               | (27)  |       |
| Roof window            | v                       |                                  |                           |               |                |              |                   |      | 0.0          |                     |               | (27a) |       |
| Basement flo           | oor                     |                                  |                           |               |                |              |                   |      | 0.0          | 0.0                 |               | (28)  |       |
| Ground floor           | r                       |                                  |                           |               |                |              |                   |      | 0.0          | 0.0                 |               | (28a) |       |
| Exposed floo           | or                      |                                  |                           |               |                |              |                   |      | 0.0          | 0.0                 |               | (28b) |       |
| Basement w             | all                     |                                  |                           |               |                |              |                   |      | 0.0          | 0.0                 |               | (29)  |       |
| External wal           | I                       |                                  |                           |               |                |              |                   |      | 17.7         | 4206.64             |               | (29a) |       |
| Roof                   |                         |                                  |                           |               |                |              |                   |      | 0.0          | 0.0                 |               | (30)  |       |
| Total area of          | f external elen         | nents ∑A, m²                     | 54.85                     |               |                |              |                   |      |              |                     |               |       | (31)  |
| Party Wall             |                         |                                  | +                         |               |                |              |                   |      | 6827.8       | 0.0                 |               | (32)  |       |
| Party floor            |                         |                                  |                           |               |                |              |                   |      |              | 6291.2              |               | (32a) |       |
| Party ceiling          |                         |                                  |                           |               |                |              |                   |      |              | 7864.0              |               | (32b) |       |
| Internal wall          | **                      |                                  |                           |               |                |              |                   |      |              | 0.0                 |               | (32c) |       |
| Internal floor         | r                       |                                  |                           |               |                |              |                   |      |              | 0.0                 |               | (32d) |       |
| Internal ceili         | ng floor                |                                  |                           |               |                |              |                   |      |              | 0.0                 |               | (32e) |       |
| Fabric heat I          | loss, W/K = ∑           | (A x U)                          |                           |               |                |              |                   |      |              |                     | 33.65         | (33)  |       |
| Heat capacit           | ty Cm = ∑(A x           | ( <b>k</b> )                     |                           |               |                |              |                   |      |              |                     | 25189.64      | (34)  |       |
| Thermal ma             | ss parameter            | (TMP = Cm ÷                      | TFA) in kJ/m <sup>2</sup> | ²K            |                |              |                   |      |              |                     | 100.0         | 100.0 | (35)  |
| Linear Therr           | mal bridges: <b>Σ</b>   | (L x Ψ) calcu                    | lated using Ap            | ppendix K     |                |              |                   |      |              |                     | 0.17          | 0.17  | (36)  |
| Point Therm            | al bridges: ∑y          | ( (W/K) if signi                 | ficant point th           | ermal bridge  | present an     | d values a   | vailable          |      |              |                     | 0.17          | 0.17  | (36a) |
| Total fabric h         | neat loss H = )         | $\Sigma(A \times U) + \Sigma(I)$ | _×Ψ) +Σχ                  |               |                |              |                   |      |              |                     | 33.82         | 33.82 | (37)  |
| Ventilation h<br>28.71 | eat loss calcu<br>28.51 | lated monthly<br>28.3            | 27.27                     | 27.06         | 26.02          | 26.02        | 25                | 5.82 | 26.44        | 27.06               | 27.47         | 27.89 | (38)  |
| Heat transfe           | r coefficient, \        | N/K                              |                           |               |                |              |                   |      |              |                     |               |       | (00)  |
| 62.54                  | 62.33                   | 62.12                            | 61.09                     | 60.88         | 59.85          | 59.85        | 59                | 9.64 | 60.26        | 60.88               | 61.3          | 61.71 | (39)  |
| Heat loss pa<br>0.8    | arameter (HLF<br>0.79   | 9), W/m²K<br>0.79                | 0.78                      | 0.77          | 0.76           | 0.76         | 0.                | 76   | 0.77         | 0.77                | 0.78          | 0.79  | (40)  |
| Number of d<br>31.0    | lays in month<br>28.0   | (Table 1a)<br>31.0               | 30.0                      | 31.0          | 30.0           | 31.0         | 31                | 1.0  | 30.0         | 31.0                | 30.0          | 31.0  | (41)  |

#### 4. Water heating energy requirement

| Accumed                                                                          | occupancy N    | J              |               |               |         |       |       |       |       | 2.44  | 2.44  |       |  |
|----------------------------------------------------------------------------------|----------------|----------------|---------------|---------------|---------|-------|-------|-------|-------|-------|-------|-------|--|
| Assumed                                                                          | occupancy, i   | •              |               | 2.44          | 2.44    |       |       |       |       |       |       |       |  |
| Hot water usage in litres per day for mixer showers, Vd,shower (from Appendix J) |                |                |               |               |         |       |       |       |       |       |       |       |  |
| Jan                                                                              | Feb            | Mar            | Apr           | May           | June    | Jul   | Aug   | Sep   | Oct   | Nov   | Dec   | (42a) |  |
| 0.0                                                                              | 0.0            | 0.0            | 0.0           | 0.0           | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | (/    |  |
| Hot water                                                                        | usage in litre | es per day for | baths, Vd,bat | h (from Apper | ndix J) |       |       |       |       |       |       |       |  |
| 75.03                                                                            | 73.92          | 72.35          | 69.46         | 67.29         | 64.89   | 63.59 | 65.15 | 66.84 | 69.41 | 72.37 | 74.78 | (42b) |  |
| Hot water usage in litres per day for other uses, Vd,other (from Appendix J)     |                |                |               |               |         |       |       |       |       |       |       | ()    |  |
| 39.58                                                                            | 38.14          | 36.7           | 35.27         | 33.83         | 32.39   | 32.39 | 33.83 | 35.27 | 36.7  | 38.14 | 39.58 | (42c) |  |

| 75.03                                                                                                                                                                                                                                                                                  | sage in litres p<br>73.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | er day for bat<br>72.35                                                                                                                                                                                                                                                                                                                                  | hs, Vd,bath (f<br>69.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rom Appendix<br>67.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (J)<br>64.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 63.59                                                                                                                                                                                                                                                                                    | 65.15                                                                                                                                                                                                                                           | 66.84                                                                                                                                                     | 69.41                                                                                                                   | 72.37                                                                                  | 74.78                                                                                            | (12h)                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Hot water u                                                                                                                                                                                                                                                                            | sage in litres p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | er day for oth                                                                                                                                                                                                                                                                                                                                           | er uses, Vd,o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ther (from App                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | endix J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30.30                                                                                                                                                                                                                                                                                    | 22.82                                                                                                                                                                                                                                           | 25.27                                                                                                                                                     | 36.7                                                                                                                    | 28.1/                                                                                  | 20.58                                                                                            | (420)                                                                                                 |
| Annual aver                                                                                                                                                                                                                                                                            | rade hot water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | usade in litre                                                                                                                                                                                                                                                                                                                                           | e per day \/d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | outrage (from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Appendix I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 52.55                                                                                                                                                                                                                                                                                    | 55.65                                                                                                                                                                                                                                           | 55.27                                                                                                                                                     | 50.7                                                                                                                    | 105 55                                                                                 | 105 55                                                                                           | (42C)                                                                                                 |
| Hot water up                                                                                                                                                                                                                                                                           | age not water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | usage in lite                                                                                                                                                                                                                                                                                                                                            | s per uay vu,a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | average (ITOIII<br>n = (42a) ± (4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Appendix J)<br>(12c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                 |                                                                                                                                                           |                                                                                                                         | 105.55                                                                                 | 105.55                                                                                           | (43)                                                                                                  |
| 114.61                                                                                                                                                                                                                                                                                 | 112.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.05                                                                                                                                                                                                                                                                                                                                                   | 104.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 101.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 97.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 95.97                                                                                                                                                                                                                                                                                    | 98.97                                                                                                                                                                                                                                           | 102.11                                                                                                                                                    | 106.12                                                                                                                  | 110.51                                                                                 | 114.36                                                                                           | (44)                                                                                                  |
| Energy cont                                                                                                                                                                                                                                                                            | tent of hot wat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | er used = / 1                                                                                                                                                                                                                                                                                                                                            | 3 v Vd m v nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | v DTm / 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 k\//h/month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (from Annend                                                                                                                                                                                                                                                                             | liv I)                                                                                                                                                                                                                                          |                                                                                                                                                           |                                                                                                                         |                                                                                        | Total =                                                                                          | 1266.87                                                                                               |
| 181.52                                                                                                                                                                                                                                                                                 | 159.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 167.61                                                                                                                                                                                                                                                                                                                                                   | 143.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 136.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 119.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 116.07                                                                                                                                                                                                                                                                                   | 122.55                                                                                                                                                                                                                                          | 125.91                                                                                                                                                    | 144.0                                                                                                                   | 157.44                                                                                 | 179.06                                                                                           | (45)                                                                                                  |
|                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                 |                                                                                                                                                           |                                                                                                                         |                                                                                        | Total =                                                                                          | 1752 82                                                                                               |
| Distribution                                                                                                                                                                                                                                                                           | loss (46) = 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15 x (45)                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                 |                                                                                                                                                           |                                                                                                                         |                                                                                        | rotar -                                                                                          | 1102.02                                                                                               |
| 27.23                                                                                                                                                                                                                                                                                  | 23.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25.14                                                                                                                                                                                                                                                                                                                                                    | 21.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17.41                                                                                                                                                                                                                                                                                    | 18.38                                                                                                                                                                                                                                           | 18.89                                                                                                                                                     | 21.6                                                                                                                    | 23.62                                                                                  | 26.86                                                                                            | (46)                                                                                                  |
| Storage vol                                                                                                                                                                                                                                                                            | ume (litres) ind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | cluding any so                                                                                                                                                                                                                                                                                                                                           | lar or WWHR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S storage with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nin same vess                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | sel                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                 |                                                                                                                                                           |                                                                                                                         | 0.0                                                                                    | 0.0                                                                                              | (47)                                                                                                  |
| Water stora                                                                                                                                                                                                                                                                            | ae loss (or HIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | J loss):                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e eterage titi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                 |                                                                                                                                                           |                                                                                                                         |                                                                                        | 0.0                                                                                              | ()                                                                                                    |
| frator otora,                                                                                                                                                                                                                                                                          | ge 1000 (or 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                 |                                                                                                                                                           |                                                                                                                         |                                                                                        |                                                                                                  |                                                                                                       |
| a) If manufa                                                                                                                                                                                                                                                                           | cturer's decla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | red loss factor                                                                                                                                                                                                                                                                                                                                          | r is known (kV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /h/day):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                 |                                                                                                                                                           |                                                                                                                         | 1.46                                                                                   | 1.46                                                                                             | (48)                                                                                                  |
| Temperature                                                                                                                                                                                                                                                                            | e factor from T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | able 2b                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                 |                                                                                                                                                           |                                                                                                                         | 0.6                                                                                    | 0.6                                                                                              | (49)                                                                                                  |
| Energy lost                                                                                                                                                                                                                                                                            | from water sto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | orage, kWh/da                                                                                                                                                                                                                                                                                                                                            | y (48) x (49) :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                 |                                                                                                                                                           |                                                                                                                         | 0.88                                                                                   | 0.88                                                                                             | (50)                                                                                                  |
| b) If manufa                                                                                                                                                                                                                                                                           | cturer's decla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | red loss factor                                                                                                                                                                                                                                                                                                                                          | r is not known                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                 |                                                                                                                                                           |                                                                                                                         |                                                                                        |                                                                                                  |                                                                                                       |
| Hot water st                                                                                                                                                                                                                                                                           | torage loss fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tor from Table                                                                                                                                                                                                                                                                                                                                           | e 2 (kWh/litre/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | dav)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                 |                                                                                                                                                           |                                                                                                                         | 0.0                                                                                    | 0.0                                                                                              | (51)                                                                                                  |
| Volume fact                                                                                                                                                                                                                                                                            | or from Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2a                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                 |                                                                                                                                                           |                                                                                                                         | 0.0                                                                                    | 0.0                                                                                              | (52)                                                                                                  |
| Temperature                                                                                                                                                                                                                                                                            | e factor from T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | able 2b                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                 |                                                                                                                                                           |                                                                                                                         | 0.0                                                                                    | 0.0                                                                                              | (53)                                                                                                  |
| Energy lost                                                                                                                                                                                                                                                                            | from water sto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | orage_kWh/da                                                                                                                                                                                                                                                                                                                                             | v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                 |                                                                                                                                                           |                                                                                                                         | 0.0                                                                                    | 0.0                                                                                              | (54)                                                                                                  |
| Enter (50) o                                                                                                                                                                                                                                                                           | r (54) in (55)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nago, ninnao                                                                                                                                                                                                                                                                                                                                             | .,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                 |                                                                                                                                                           |                                                                                                                         | 0.88                                                                                   | 0.88                                                                                             | (55)                                                                                                  |
| Water stora                                                                                                                                                                                                                                                                            | ae (or HILL) los                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s calculated t                                                                                                                                                                                                                                                                                                                                           | or each mont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | h (56) = (55) x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (41)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                 |                                                                                                                                                           |                                                                                                                         | 0.00                                                                                   | 0.00                                                                                             | (00)                                                                                                  |
| 27.16                                                                                                                                                                                                                                                                                  | 24.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27.16                                                                                                                                                                                                                                                                                                                                                    | 26.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 27.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27.16                                                                                                                                                                                                                                                                                    | 27.16                                                                                                                                                                                                                                           | 26.28                                                                                                                                                     | 27.16                                                                                                                   | 26.28                                                                                  | 27.16                                                                                            | (56)                                                                                                  |
| If the vessel                                                                                                                                                                                                                                                                          | l contains ded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | icated solar st                                                                                                                                                                                                                                                                                                                                          | orage or dedi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | cated WWHR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                 |                                                                                                                                                           |                                                                                                                         |                                                                                        |                                                                                                  | (00)                                                                                                  |
|                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                          | orage or acar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e eterage,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                 |                                                                                                                                                           |                                                                                                                         |                                                                                        |                                                                                                  |                                                                                                       |
| (57)m = (56                                                                                                                                                                                                                                                                            | )m 🗆 [(47) – V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | /s] ÷ (47), else                                                                                                                                                                                                                                                                                                                                         | e (57)m = (56)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                 |                                                                                                                                                           |                                                                                                                         |                                                                                        |                                                                                                  |                                                                                                       |
| (57)m = (56                                                                                                                                                                                                                                                                            | )m □ [(47) – V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | /s] ÷ (47), else                                                                                                                                                                                                                                                                                                                                         | (142) from Ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | applicable)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                 |                                                                                                                                                           |                                                                                                                         |                                                                                        |                                                                                                  |                                                                                                       |
| (57)m = (56<br>where Vs is<br>27.16                                                                                                                                                                                                                                                    | )m □ [(47) – V<br>Vww from Ap<br>24.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 's] ÷ (47), else<br>pendix G3 or (<br>27.16                                                                                                                                                                                                                                                                                                              | : (57)m = (56)<br>(H12) from Ap<br>26.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m<br>pendix H (as<br>27.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | applicable).<br>26.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27.16                                                                                                                                                                                                                                                                                    | 27.16                                                                                                                                                                                                                                           | 26.28                                                                                                                                                     | 27.16                                                                                                                   | 26.28                                                                                  | 27.16                                                                                            | (57)                                                                                                  |
| (57)m = (56<br>where Vs is<br>27.16<br>Primary circ                                                                                                                                                                                                                                    | )m □ [(47) – V<br>Vww from Ap<br>24.53<br>cuit loss for ead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | /s] ÷ (47), else<br>pendix G3 or (<br>27.16<br>ch month from                                                                                                                                                                                                                                                                                             | e (57)m = (56)<br>(H12) from Ap<br>26.28<br>1 Table 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m<br>pendix H (as<br>27.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | applicable).<br>26.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27.16                                                                                                                                                                                                                                                                                    | 27.16                                                                                                                                                                                                                                           | 26.28                                                                                                                                                     | 27.16                                                                                                                   | 26.28                                                                                  | 27.16                                                                                            | (57)                                                                                                  |
| (57)m = (56<br>where Vs is<br>27.16<br>Primary circ                                                                                                                                                                                                                                    | )m □ [(47) – V<br>Vww from Ap<br>24.53<br>cuit loss for eac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 's] ÷ (47), else<br>pendix G3 or (<br>27.16<br>ch month from                                                                                                                                                                                                                                                                                             | e (57)m = (56)<br>(H12) from Ap<br>26.28<br>1 Table 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m<br>pendix H (as<br>27.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | applicable).<br>26.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27.16                                                                                                                                                                                                                                                                                    | 27.16                                                                                                                                                                                                                                           | 26.28                                                                                                                                                     | 27.16                                                                                                                   | 26.28                                                                                  | 27.16                                                                                            | (57)                                                                                                  |
| (57)m = (56<br>where Vs is<br>27.16<br>Primary circ<br>modified by<br>23.26                                                                                                                                                                                                            | )m □ [(47) – V<br>Vww from Ap<br>24.53<br>cuit loss for ead<br>factor from Ta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 's] ÷ (47), else<br>pendix G3 or (<br>27.16<br>ch month from<br>ble H4 if there<br>23.26                                                                                                                                                                                                                                                                 | e (57)m = (56)<br>(H12) from Ap<br>26.28<br>1 Table 3<br>e is solar wate<br>22.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m<br>pendix H (as<br>27.16<br>r heating and<br>23.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | applicable).<br>26.28<br>a cylinder the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 27.16<br>ermostat, altho                                                                                                                                                                                                                                                                 | 27.16<br>bugh not for D                                                                                                                                                                                                                         | 26.28<br>HW-only heat                                                                                                                                     | 27.16<br>t networks)                                                                                                    | 26.28                                                                                  | 27.16                                                                                            | (57)                                                                                                  |
| (57)m = (56<br>where Vs is<br>27.16<br>Primary circ<br>modified by<br>23.26                                                                                                                                                                                                            | )m □ [(47) – V<br>Vww from Ap<br>24.53<br>wit loss for eac<br>factor from Ta<br>21.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (s] ÷ (47), else<br>pendix G3 or (<br>27.16<br>ch month from<br>ble H4 if there<br>23.26                                                                                                                                                                                                                                                                 | e (57)m = (56)<br>(H12) from Ap<br>26.28<br>1 Table 3<br>e is solar wate<br>22.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m<br>27.16<br>r heating and<br>23.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | applicable).<br>26.28<br>a cylinder the<br>22.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27.16<br>ermostat, althe<br>23.26                                                                                                                                                                                                                                                        | 27.16<br>bugh not for D<br>23.26                                                                                                                                                                                                                | 26.28<br>HW-only hea<br>22.51                                                                                                                             | 27.16<br>t networks)<br>23.26                                                                                           | 26.28<br>22.51                                                                         | 27.16<br>23.26                                                                                   | (57)                                                                                                  |
| (57)m = (56<br>where Vs is<br>27.16<br>Primary circ<br>modified by<br>23.26<br>Combi loss                                                                                                                                                                                              | )m [ [(47) – V<br>Vww from Ap<br>24.53<br>wit loss for eac<br>factor from Ta<br>21.01<br>for each mont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 's] + (47), else<br>pendix G3 or i<br>27.16<br>ch month from<br>ble H4 if there<br>23.26<br>h from Table 3                                                                                                                                                                                                                                               | : (57)m = (56)<br>(H12) from Ap<br>26.28<br>1 Table 3<br>e is solar wate<br>22.51<br>3a, 3b or 3c (e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | m<br>27.16<br>r heating and<br>23.26<br>enter "0" if not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | applicable).<br>26.28<br>a cylinder the<br>22.51<br>a combi boile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27.16<br>ermostat, altho<br>23.26<br>r)                                                                                                                                                                                                                                                  | 27.16<br>bugh not for D<br>23.26                                                                                                                                                                                                                | 26.28<br>HW-only heat<br>22.51                                                                                                                            | 27.16<br>t networks)<br>23.26                                                                                           | 26.28<br>22.51                                                                         | 27.16<br>23.26                                                                                   | (57)                                                                                                  |
| (57)m = (56<br>where Vs is<br>27.16<br>Primary circ<br>modified by<br>23.26<br>Combi loss<br>0.0                                                                                                                                                                                       | )m [ (47) – V<br>Vww from Ap<br>24.53<br>wit loss for eau<br>factor from Ta<br>21.01<br>for each mont<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rs] + (47), else<br>pendix G3 or 1<br>27.16<br>ch month from<br>ble H4 if there<br>23.26<br>h from Table 3<br>0.0                                                                                                                                                                                                                                        | e (57)m = (56)<br>(H12) from Ap<br>26.28<br>Table 3<br>e is solar wate<br>22.51<br>Ba, 3b or 3c (e<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | m<br>pendix H (as<br>27.16<br>r heating and<br>23.26<br>inter "0" if not<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | applicable).<br>26.28<br>a cylinder the<br>22.51<br>a combi boile<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27.16<br>ermostat, altho<br>23.26<br>r)<br>0.0                                                                                                                                                                                                                                           | 27.16<br>bugh not for D<br>23.26<br>0.0                                                                                                                                                                                                         | 26.28<br>HW-only hea<br>22.51<br>0.0                                                                                                                      | 27.16<br>t networks)<br>23.26<br>0.0                                                                                    | 26.28<br>22.51<br>0.0                                                                  | 27.16<br>23.26<br>0.0                                                                            | (57)<br>(59)<br>(61)                                                                                  |
| (57)m = (56<br>where Vs is<br>27.16<br>Primary circ<br>modified by<br>23.26<br>Combi loss<br>0.0<br>Total heat re<br>231.94                                                                                                                                                            | )m [ [(47) – V<br>Vww from Ap<br>24.53<br>suit loss for ear<br>factor from Ta<br>21.01<br>for each mont<br>0.0<br>equired for wa<br>205.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (s) + (47), else<br>pendix G3 or (27.16<br>ch month from<br>ble H4 if there<br>23.26<br>h from Table 3<br>0.0<br>ter heating ca<br>218.03                                                                                                                                                                                                                | : (57)m = (56)<br>(H12) from Ap<br>26.28<br>Table 3<br>e is solar wate<br>22.51<br>3a, 3b or 3c (e<br>0.0<br>Iculated for ea<br>192.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | m<br>pendix H (as 27.16<br>r heating and<br>23.26<br>enter "0" if not<br>0.0<br>ach month (62<br>186.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | applicable).<br>26.28<br>a cylinder the<br>22.51<br>a combi bolle<br>0.0<br>) = 0.85 × (45<br>168.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27.16<br>ermostat, altho<br>23.26<br>r)<br>0.0<br>i) + (46) + (57<br>166.49                                                                                                                                                                                                              | 27.16<br>Dugh not for D<br>23.26<br>0.0<br>) + (59) + (61)<br>172.97                                                                                                                                                                            | 26.28<br>HW-only heat<br>22.51<br>0.0<br>174.7                                                                                                            | 27.16<br>t networks)<br>23.26<br>0.0<br>194.42                                                                          | 26.28<br>22.51<br>0.0<br>206.23                                                        | 27.16<br>23.26<br>0.0<br>229.48                                                                  | (57)<br>(59)<br>(61)<br>(62)                                                                          |
| (57)m = (56<br>where Vs is<br>27.16<br>Primary circ<br>modified by<br>23.26<br>Combi loss<br>0.0<br>Total heat re<br>231.94<br>CWWHRS I                                                                                                                                                | )m [ (47) – V<br>Vww from Ap.<br>24.53<br>wit loss for ear<br>factor from Ta<br>21.01<br>for each mont<br>0.0<br>equired for wat<br>205.11<br>DHW input cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (s) + (47), else<br>pendix G3 or (<br>27.16<br>ch month from<br>ble H4 if there<br>23.26<br>h from Table 3<br>0.0<br>ter heating ca<br>218.03<br>culated using                                                                                                                                                                                           | (H12) from Ap<br>26.28<br>Table 3<br>is solar wate<br>22.51<br>3a, 3b or 3c (e<br>0.0<br>Iculated for ea<br>192.15<br>Appendix G (i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | m<br>pendix H (as 27.16<br>ar heating and<br>23.26<br>anter "0" if not<br>0.0<br>ach month (62<br>186.54<br>megative quar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | applicable).<br>26.28<br>a cylinder the<br>22.51<br>a combi boile<br>0.0<br>) = 0.85 × (45<br>168.4<br>titty) (enter "0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 27.16<br>ermostat, altho<br>23.26<br>r)<br>0.0<br>0) + (46) + (57<br>166.49<br>" if no WWHR                                                                                                                                                                                              | 27.16<br>bugh not for D<br>23.26<br>0.0<br>) + (59) + (61)<br>172.97<br>S contribution                                                                                                                                                          | 26.28<br>HW-only heat<br>22.51<br>0.0<br>174.7<br>h to water hea                                                                                          | 27.16<br>t networks)<br>23.26<br>0.0<br>194.42<br>ting)                                                                 | 26.28<br>22.51<br>0.0<br>206.23                                                        | 27.16<br>23.26<br>0.0<br>229.48                                                                  | (57)<br>(59)<br>(61)<br>(62)                                                                          |
| (57)m = (56<br>where Vs is<br>27.16<br>Primary circ<br>modified by<br>23.26<br>Combi loss<br>0.0<br>Total heat re<br>231.94<br>CWWHRS I<br>0.0                                                                                                                                         | )m [ (47) – V<br>Vww from Ap<br>24.53<br>wit loss for eau<br>factor from Ta<br>21.01<br>for each mont<br>0.0<br>equired for wa<br>205.11<br>DHW input cal<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (s) + (47), else<br>pendix G3 or (<br>27.16<br>ch month from<br>ble H4 if there<br>23.26<br>h from Table 3<br>0.0<br>ter heating ca<br>218.03<br>culated using<br>0.0                                                                                                                                                                                    | (H12) from Ap<br>26.28<br>Table 3<br>is solar wate<br>22.51<br>Ba, 3b or 3c (e<br>0.0<br>Iculated for ea<br>192.15<br>Appendix G (i<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | m<br>pendix H (as 27.16<br>er heating and<br>23.26<br>enter "0" if not<br>0.0<br>ech month (62<br>186.54<br>negative quan<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | applicable).<br>26.28<br>a cylinder the<br>22.51<br>a combi boile<br>0.0<br>) = $0.85 \times (45)$<br>168.4<br>titty) (enter "0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27.16<br>ermostat, altho<br>23.26<br>r)<br>0.0<br>c) + (46) + (57<br>166.49<br>" if no WWHR<br>0.0                                                                                                                                                                                       | 27.16<br>bugh not for D<br>23.26<br>0.0<br>) + (59) + (61)<br>172.97<br>S contribution<br>0.0                                                                                                                                                   | 26.28<br>HW-only heat<br>22.51<br>0.0<br>174.7<br>n to water heat<br>0.0                                                                                  | 27.16<br>(networks)<br>23.26<br>0.0<br>194.42<br>ting)<br>0.0                                                           | 26.28<br>22.51<br>0.0<br>206.23<br>0.0                                                 | 27.16<br>23.26<br>0.0<br>229.48<br>0.0                                                           | (57)<br>(59)<br>(61)<br>(62)<br>(63a)                                                                 |
| (57)m = (56<br>where Vs is<br>27.16<br>Primary circ<br>modified by<br>23.26<br>Combi loss<br>0.0<br>Total heat re<br>231.94<br>CWWHRS I<br>0.0<br>PV diverter                                                                                                                          | )m [ (47) – V<br>Vww from Ap.<br>24.53<br>factor from Ta<br>21.01<br>for each mont<br>0.0<br>equired for war<br>205.11<br>DHW input cal<br>0.0<br>DHW input cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (s) + (47), else<br>pendix G3 or (<br>27.16<br>ch month from<br>ble H4 if there<br>23.26<br>h from Table 3<br>0.0<br>ter heating ca<br>218.03<br>culated using<br>0.0<br>lculated using                                                                                                                                                                  | (H12) from Ap<br>26.28<br>Table 3<br>is solar wate<br>22.51<br>Ba, 3b or 3c (e<br>0.0<br>lculated for ea<br>192.15<br>Appendix G (i<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | m<br>pendix H (as 27.16<br>r heating and<br>23.26<br>enter "0" if not<br>0.0<br>ach month (62<br>186.54<br>negative quan<br>0.0<br>(negative quar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | applicable).<br>26.28<br>a cylinder the<br>22.51<br>a combi boile<br>0.0<br>) = 0.85 × (45<br>168.4<br>titty) (enter "0<br>0.0<br>ntity) (enter "0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27.16<br>ermostat, althe<br>23.26<br>r)<br>0.0<br>i) + (46) + (57<br>166.49<br>" if no WWHR<br>0.0                                                                                                                                                                                       | 27.16<br>bugh not for D<br>23.26<br>0.0<br>) + (59) + (61)<br>172.97<br>S contribution<br>0.0<br>erter contribut                                                                                                                                | 26.28<br>HW-only hear<br>22.51<br>0.0<br>174.7<br>to water hear<br>0.0<br>ion)                                                                            | 27.16<br>(networks)<br>23.26<br>0.0<br>194.42<br>ting)<br>0.0                                                           | 26.28<br>22.51<br>0.0<br>206.23<br>0.0                                                 | 27.16<br>23.26<br>0.0<br>229.48<br>0.0                                                           | (57)<br>(59)<br>(61)<br>(62)<br>(63a)                                                                 |
| (57)m = (56<br>where Vs is<br>27.16<br>Primary circ<br>modified by<br>23.26<br>Combi loss<br>0.0<br>Total heat re<br>231.94<br>CWWHRS I<br>0.0<br>PV diverter<br>0.0                                                                                                                   | )m [ (47) – V<br>Vww from Ap.<br>24.53<br>suit loss for eau<br>factor from Ta<br>21.01<br>for each mont<br>0.0<br>equired for wal<br>205.11<br>DHW input cal<br>0.0<br>DHW input cal<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (s] + (47), else<br>pendix G3 or 1<br>27.16<br>ch month from<br>ble H4 if there<br>23.26<br>h from Table 3<br>0.0<br>ter heating ca<br>218.03<br>culated using<br>0.0<br>lculated using<br>0.0                                                                                                                                                           | (H12) from Ap<br>26.28<br>a Table 3<br>e is solar wate<br>22.51<br>3a, 3b or 3c (e<br>0.0<br>iculated for ea<br>192.15<br>Appendix G (i<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m<br>pendix H (as a<br>27.16<br>ar heating and<br>23.26<br>anter "0" if not<br>0.0<br>ach month (62<br>186.54<br>negative quar<br>0.0<br>(negative quar<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | applicable).<br>26.28<br>a cylinder the<br>22.51<br>a combi boile<br>0.0<br>) = 0.85 × (45<br>168.4<br>titly) (enter "0<br>0.0<br>ntitly) (enter "C<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27.16<br>ermostat, althe<br>23.26<br>r)<br>0.0<br>i) + (46) + (57<br>166.49<br>" if no WWHR<br>0.0                                                                                                                                                                                       | 27.16<br>bugh not for D<br>23.26<br>0.0<br>) + (59) + (61)<br>172.97<br>S contribution<br>0.0<br>enter contribut<br>0.0                                                                                                                         | 26.28<br>HW-only heat<br>22.51<br>0.0<br>174.7<br>n to water heat<br>0.0<br>ion)<br>0.0                                                                   | 27.16<br>t networks)<br>23.26<br>0.0<br>194.42<br>ting)<br>0.0<br>0.0                                                   | 26.28<br>22.51<br>0.0<br>206.23<br>0.0<br>0.0                                          | 27.16<br>23.26<br>0.0<br>229.48<br>0.0<br>0.0                                                    | (57)<br>(59)<br>(61)<br>(62)<br>(63a)<br>(63b)                                                        |
| (57)m = (56<br>where Vs is<br>27.16<br>Primary circ<br>modified by<br>23.26<br>Combi loss<br>0.0<br>Total heat re<br>231.94<br>CWWHRS I<br>0.0<br>PV diverter<br>0.0<br>Solar DHW<br>0.0                                                                                               | )m □ [(47) – V<br>Vww from Ap,<br>24.53<br>factor from Ta<br>21.01<br>for each mont<br>0.0<br>equired for wat<br>205.11<br>DHW input cal<br>0.0<br>DHW input cal<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rs] + (47), else<br>pendix G3 or (<br>27.16<br>ch month from<br>able H4 if there<br>23.26<br>h from Table 3<br>0.0<br>ter heating ca<br>218.03<br>culated using<br>0.0<br>lculated using<br>0.0<br>lculated using<br>0.0                                                                                                                                 | (H12) from Ap<br>26.28<br>Table 3<br>is solar wate<br>22.51<br>Ba, 3b or 3c (e<br>0.0<br>Iculated for ea<br>192.15<br>Appendix G (i<br>0.0<br>Appendix G (i<br>0.0<br>ndix H (negat<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | m<br>pendix H (as :<br>27.16<br>r heating and<br>23.26<br>enter "0" if not<br>0.0<br>ach month (62<br>186.54<br>negative quan<br>0.0<br>(negative quan<br>0.0<br>ive quantity) (r<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | applicable).<br>26.28<br>a cylinder the<br>22.51<br>a combi boile<br>0.0<br>) = $0.85 \times (45)$<br>168.4<br>titly) (enter "0<br>0.0<br>ntitly) (enter "0<br>0.0<br>enter "0" if no<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27.16<br>ermostat, altho<br>23.26<br>r)<br>0.0<br>0) + (46) + (57<br>166.49<br>" if no WWHR<br>0.0<br>" if no PV div<br>0.0<br>solar contribu<br>0.0                                                                                                                                     | 27.16<br>bugh not for D<br>23.26<br>0.0<br>) + (59) + (61)<br>172.97<br>S contribution<br>0.0<br>erter contribut<br>0.0<br>ution to water<br>0.0                                                                                                | 26.28<br>HW-only heat<br>22.51<br>0.0<br>174.7<br>n to water heat<br>0.0<br>ion)<br>0.0<br>heating)<br>0.0                                                | 27.16<br>(networks)<br>23.26<br>0.0<br>194.42<br>ting)<br>0.0<br>0.0<br>0.0                                             | 26.28<br>22.51<br>0.0<br>206.23<br>0.0<br>0.0                                          | 27.16<br>23.26<br>0.0<br>229.48<br>0.0<br>0.0<br>0.0                                             | (57)<br>(59)<br>(61)<br>(62)<br>(63a)<br>(63b)                                                        |
| (57)m = (56<br>where Vs is<br>27.16<br>Primary circ<br>modified by<br>23.26<br>Combi loss<br>0.0<br>Total heat re<br>231.94<br>CWWHRS I<br>0.0<br>PV diverter<br>0.0<br>Solar DHW<br>0.0                                                                                               | )m [ (47) – V<br>Vww from Ap,<br>24.53<br>suit loss for eau<br>factor from Ta<br>21.01<br>for each mont<br>0.0<br>equired for war<br>205.11<br>DHW input cal<br>0.0<br>DHW input cal<br>0.0<br>DHW input calculate<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (s) + (47), else<br>pendix G3 or (<br>27.16<br>ch month from<br>ble H4 if there<br>23.26<br>h from Table 3<br>0.0<br>ter heating ca<br>218.03<br>culated using<br>0.0<br>lculated using<br>0.0<br>lculated using<br>0.0<br>ed using Appe<br>0.0                                                                                                          | (H12) from Ap<br>26.28<br>Table 3<br>is solar wate<br>22.51<br>Ba, 3b or 3c (e<br>0.0<br>lculated for ea<br>192.15<br>Appendix G (i<br>0.0<br>Appendix G (i<br>0.0<br>ndix H (negat<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | m<br>pendix H (as :<br>27.16<br>r heating and<br>23.26<br>inter "0" if not<br>0.0<br>ach month (62<br>186.54<br>negative quan<br>0.0<br>(negative quan<br>0.0<br>ive quantity) (r<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | applicable).<br>26.28<br>a cylinder the<br>22.51<br>a combi boile<br>0.0<br>) = 0.85 × (45<br>168.4<br>titly) (enter "0<br>0.0<br>ntitly) (enter "0<br>0.0<br>enter "0" if no<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27.16<br>ermostat, althe<br>23.26<br>r)<br>0.0<br>e) + (46) + (57<br>166.49<br>" if no WWHR<br>0.0<br>" if no PV divi<br>0.0<br>solar contribu<br>0.0                                                                                                                                    | 27.16<br>bugh not for D<br>23.26<br>0.0<br>) + (59) + (61)<br>172.97<br>S contribution<br>0.0<br>erter contribut<br>0.0<br>ution to water<br>0.0                                                                                                | 26.28<br>HW-only heat<br>22.51<br>0.0<br>174.7<br>to water heat<br>0.0<br>ion)<br>0.0<br>heating)<br>0.0                                                  | 27.16<br>(networks)<br>23.26<br>0.0<br>194.42<br>ting)<br>0.0<br>0.0<br>0.0                                             | 26.28<br>22.51<br>0.0<br>206.23<br>0.0<br>0.0<br>0.0                                   | 27.16<br>23.26<br>0.0<br>229.48<br>0.0<br>0.0<br>0.0                                             | (57)<br>(59)<br>(61)<br>(62)<br>(63a)<br>(63b)<br>(63c)                                               |
| (57)m = (56<br>where Vs is<br>27.16<br>Primary circ<br>modified by<br>23.26<br>Combi loss<br>0.0<br>Total heat re<br>231.94<br>CWWHRS 10<br>0.0<br>PV diverter<br>0.0<br>Solar DHW<br>0.0<br>FGHRS DH<br>0.0                                                                           | )m □ [(47) – V<br>Vww from Ap,<br>24.53<br>wit loss for ear<br>factor from Ta<br>21.01<br>for each mont<br>0.0<br>equired for war<br>205.11<br>DHW input callow<br>0.0<br>DHW input calculate<br>0.0<br>W input calculate<br>0.0<br>W input calculate<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rs] + (47), else<br>pendix G3 or r<br>27.16<br>ch month from<br>ble H4 if there<br>23.26<br>h from Table 3<br>0.0<br>ter heating ca<br>218.03<br>culated using<br>0.0<br>lculated using<br>0.0<br>lculated using<br>0.0<br>ated using Appe<br>0.0                                                                                                        | (H12) from Ap<br>26.28<br>Table 3<br>is solar wate<br>22.51<br>3a, 3b or 3c (e<br>0.0<br>Iculated for ea<br>192.15<br>Appendix G (i<br>0.0<br>Appendix G (i<br>0.0<br>mdix H (negat<br>0.0<br>pendix G (neg<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m<br>pendix H (as :<br>27.16<br>r heating and<br>23.26<br>wher "0" if not<br>0.0<br>ach month (62<br>186.54<br>negative quan<br>0.0<br>(negative quan<br>0.0<br>(ive quantity) (<br>0.0<br>gative quantity<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | applicable).<br>26.28<br>a cylinder the<br>22.51<br>a combi boile<br>0.0<br>) = 0.85 × (45<br>168.4<br>tity) (enter "0<br>0.0<br>enter "0" if no<br>0.0<br>/) (enter "0" if<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27.16<br>ermostat, althe<br>23.26<br>r)<br>0.0<br>0) + (46) + (57<br>166.49<br>" if no WWHR<br>0.0<br>" if no PV div<br>0.0<br>" on PV div<br>0.0<br>solar contribu<br>0.0<br>no FGHRS co<br>0.0                                                                                         | 27.16<br>bugh not for D<br>23.26<br>0.0<br>) + (59) + (61)<br>172.97<br>S contribution<br>0.0<br>erter contribut<br>0.0<br>ution to water<br>0.0<br>ontribution to water<br>0.0                                                                 | 26.28<br>HW-only heat<br>22.51<br>0.0<br>174.7<br>h to water heat<br>0.0<br>ion)<br>0.0<br>heating)<br>0.0<br>water heating,<br>0.0                       | 27.16<br>t networks)<br>23.26<br>0.0<br>194.42<br>ting)<br>0.0<br>0.0<br>0.0                                            | 26.28<br>22.51<br>0.0<br>206.23<br>0.0<br>0.0<br>0.0<br>0.0                            | 27.16<br>23.26<br>0.0<br>229.48<br>0.0<br>0.0<br>0.0<br>0.0                                      | (57)<br>(59)<br>(61)<br>(62)<br>(63a)<br>(63a)<br>(63b)<br>(63c)<br>(63d)                             |
| (57)m = (56<br>where Vs is<br>27.16<br>Primary circ<br>modified by<br>23.26<br>Combi loss<br>0.0<br>Total heat re<br>231.94<br>CWWHRS I<br>0.0<br>PV diverter<br>0.0<br>Solar DHW<br>0.0<br>FGHRS DH<br>0.0<br>Output from                                                             | )m □ [(47) – V<br>Vww from Ap,<br>24.53<br>suit loss for eau<br>factor from Ta<br>21.01<br>for each mont<br>0.0<br>equired for war<br>205.11<br>DHW input cal<br>0.0<br>DHW input calculate<br>0.0<br>W input calculate<br>0.0<br>W input calculate<br>0.0<br>w input calculate<br>0.0<br>w input calculate<br>0.0<br>w input calculate<br>0.0<br>w input calculate<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (s) + (47), else<br>pendix G3 or (<br>27.16<br>ch month from<br>ble H4 if there<br>23.26<br>h from Table 3<br>0.0<br>ter heating ca<br>218.03<br>culated using<br>0.0<br>culated using<br>0.0<br>culated using<br>0.0<br>culated using Appe<br>0.0<br>for each month                                                                                     | (H12) from Ap<br>26.28<br>Table 3<br>is solar wate<br>22.51<br>Ba, 3b or 3c (e<br>0.0<br>Iculated for ea<br>192.15<br>Appendix G (i<br>0.0<br>Appendix G (i<br>0.0<br>ndix H (negat<br>0.0<br>pendix G (neg<br>0.0<br>th, kWh/month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | m<br>pendix H (as $\frac{27.16}{23.26}$<br>anter "0" if not<br>0.0<br>ach month (62<br>186.54<br>negative quan<br>0.0<br>(negative quantity) (<br>0.0<br>gative quantity) (<br>0.0<br>n (64) = (62) +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | applicable).<br>26.28<br>a cylinder the<br>22.51<br>a combi boile<br>0.0<br>) = 0.85 × (45<br>168.4<br>tity) (enter "0<br>0.0<br>enter "0" if no<br>0.0<br>/) (enter "0" if no<br>0.0<br>/) (enter "0" if no<br>0.0<br>/) (enter "0" if no<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27.16<br>ermostat, altho<br>23.26<br>r)<br>0.0<br>c) + (46) + (57<br>166.49<br>" if no WWHR<br>0.0<br>" if no PV div<br>0.0<br>solar contribu<br>0.0<br>no FGHRS cr<br>0.0<br>) + (63c) + (63                                                                                            | 27.16<br>bugh not for D<br>23.26<br>0.0<br>) + (59) + (61)<br>172.97<br>S contribution<br>0.0<br>effer contribut<br>0.0<br>ution to water<br>0.0<br>ontribution to water<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.                 | 26.28<br>HW-only heat<br>22.51<br>0.0<br>174.7<br>to water heat<br>0.0<br>ion)<br>0.0<br>heating)<br>0.0<br>water heating<br>0.0                          | 27.16<br>(networks)<br>23.26<br>0.0<br>194.42<br>ting)<br>0.0<br>0.0<br>0.0<br>0.0                                      | 26.28<br>22.51<br>0.0<br>206.23<br>0.0<br>0.0<br>0.0<br>0.0                            | 27.16<br>23.26<br>0.0<br>229.48<br>0.0<br>0.0<br>0.0<br>0.0                                      | (57)<br>(59)<br>(61)<br>(62)<br>(63a)<br>(63b)<br>(63c)<br>(63d)                                      |
| (57)m = (56<br>where Vs is<br>27.16<br>Primary circ<br>modified by<br>23.26<br>Combi loss<br>0.0<br>Total heat re<br>231.94<br>CWWHRS I<br>0.0<br>PV diverter<br>0.0<br>Solar DHW<br>0.0<br>FGHRS DH<br>0.0<br>Output from<br>231.94                                                   | )m □ [(47) – V<br>Vww from Ap,<br>24.53<br>suit loss for eau<br>factor from Ta<br>21.01<br>for each mont<br>0.0<br>equired for wal<br>205.11<br>DHW input cal<br>0.0<br>DHW input calculate<br>0.0<br>W input calculate<br>0.0<br>W input calculate<br>0.0<br>W input calculate<br>0.0<br>W input calculate<br>0.0<br>W input calculate<br>0.0<br>W input calculate<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (s) + (47), else<br>pendix G3 or (<br>27.16<br>ch month from<br>ble H4 if there<br>23.26<br>h from Table 3<br>0.0<br>ter heating ca<br>218.03<br>culated using<br>0.0<br>culated using<br>0.0<br>culated using<br>0.0<br>culated using Appe<br>0.0<br>for each mont<br>218.03                                                                            | (H12) from Ap<br>26.28<br>Table 3<br>is solar wate<br>22.51<br>Ba, 3b or 3c (e<br>0.0<br>Iculated for ea<br>192.15<br>Appendix G (i<br>0.0<br>Appendix G (i<br>0.0<br>ndix H (negat<br>0.0<br>ndix H (negat<br>0.0<br>th, kWh/month<br>192.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | m<br>pendix H (as $\frac{27.16}{23.26}$<br>or heating and $\frac{23.26}{100}$<br>or ther "0" if not $0.0$<br>ach month (62<br>186.54<br>negative quant<br>0.0<br>(negative quantity) ( $\frac{100}{0.0}$<br>out quantity) ( $\frac{100}{0.0}$<br>apative quantity) ( $\frac{100}{0.0}$<br>out quantity) ( $\frac{100}{0.0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | applicable).<br>26.28<br>a cylinder the<br>22.51<br>a combi boile<br>0.0<br>) = 0.85 × (45<br>168.4<br>titty) (enter "0"<br>0.0<br>enter "0" if no<br>0.0<br>() (enter "0" if no<br>0.0<br>() () () () () () () () () () () () () (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 27.16<br>ermostat, althu<br>23.26<br>r)<br>0.0<br>i) + (46) + (57<br>166.49<br>" if no WWHR<br>0.0<br>" if no PV divi<br>0.0<br>solar contribu<br>0.0<br>no FGHRS cr<br>0.0<br>) + (63c) + (62<br>166.49                                                                                 | 27.16<br>bugh not for D<br>23.26<br>0.0<br>) + (59) + (61)<br>172.97<br>S contribution<br>0.0<br>erter contribut<br>0.0<br>ution to water<br>0.0<br>ontribution to water<br>0.0<br>3d)<br>172.97                                                | 26.28<br>HW-only heat<br>22.51<br>0.0<br>174.7<br>to water heat<br>0.0<br>ion)<br>0.0<br>heating)<br>0.0<br>water heating<br>0.0                          | 27.16<br>a networks)<br>23.26<br>0.0<br>194.42<br>ting)<br>0.0<br>0.0<br>0.0<br>0.0<br>194.42                           | 26.28<br>22.51<br>0.0<br>206.23<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>206.23           | 27.16<br>23.26<br>0.0<br>229.48<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>229.48                     | (57)<br>(59)<br>(61)<br>(62)<br>(63a)<br>(63b)<br>(63c)<br>(63d)<br>(64)                              |
| (57)m = (56<br>where Vs is<br>27.16<br>Primary circ<br>modified by<br>23.26<br>Combi loss<br>0.0<br>Total heat re<br>231.94<br>CWWHRS I<br>0.0<br>PV diverter<br>0.0<br>Solar DHW<br>0.0<br>FGHRS DH<br>0.0<br>Output from<br>231.94                                                   | )m [ (47) – V<br>Vww from Ap<br>24.53<br>suit loss for eau<br>factor from Ta<br>21.01<br>for each mont<br>0.0<br>equired for wa<br>205.11<br>DHW input cal<br>0.0<br>DHW input calculate<br>0.0<br>W input calculate<br>0.0<br>W input calculate<br>0.0<br>W input calculate<br>0.0<br>W input calculate<br>0.0<br>W input calculate<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rs] + (47), else<br>pendix G3 or r<br>27.16<br>ch month from<br>ble H4 if there<br>23.26<br>h from Table 3<br>0.0<br>ter heating ca<br>218.03<br>culated using<br>0.0<br>lculated using<br>0.0<br>lculated using<br>0.0<br>ated using App<br>0.0<br>for each mont<br>218.03                                                                              | (H12) from Ap<br>26.28<br>Table 3<br>e is solar wate<br>22.51<br>3a, 3b or 3c (e<br>0.0<br>Iculated for ea<br>192.15<br>Appendix G (i<br>0.0<br>Appendix G (i<br>0.0<br>ndix H (negat<br>0.0<br>pendix G (neg<br>0.0<br>ib, kWh/month<br>192.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m<br>pendix H (as $\frac{27.16}{23.26}$<br>er heating and<br>$\frac{23.26}{23.26}$<br>enter "0" if not<br>0.0<br>ach month (62<br>186.54<br>negative quant<br>0.0<br>(negative quantity) (<br>0.0<br>gative quantity) (<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                            | applicable).<br>26.28<br>a cylinder the<br>22.51<br>a combi boile<br>0.0<br>) = 0.85 × (45<br>168.4<br>tity) (enter "0<br>0.0<br>enter "0" if no<br>0.0<br>() (enter "0" if | 27.16<br>ermostat, althu<br>23.26<br>r)<br>0.0<br>i) + (46) + (57<br>166.49<br>" if no WWHR<br>0.0<br>" if no PV divi<br>0.0<br>solar contribu<br>0.0<br>no FGHRS ct<br>0.0<br>) + (63c) + (63<br>166.49                                                                                 | 27.16<br>Dugh not for D<br>23.26<br>0.0<br>) + (59) + (61)<br>172.97<br>S contribution<br>0.0<br>erter contribut<br>0.0<br>ution to water<br>0.0<br>ontribution to water<br>0.0<br>0.0<br>172.97                                                | 26.28<br>HW-only heal<br>22.51<br>0.0<br>174.7<br>to water heal<br>0.0<br>ion)<br>0.0<br>heating)<br>0.0<br>water heating,<br>0.0<br>174.7                | 27.16<br>t networks)<br>23.26<br>0.0<br>194.42<br>ting)<br>0.0<br>0.0<br>0.0<br>0.0<br>194.42                           | 26.28<br>22.51<br>0.0<br>206.23<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>206.23           | 27.16<br>23.26<br>0.0<br>229.48<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>229.48<br>Total =          | (57)<br>(59)<br>(61)<br>(62)<br>(63a)<br>(63b)<br>(63c)<br>(63d)<br>(63d)<br>(64)<br>2346.45          |
| (57)m = (56<br>where Vs is<br>27.16<br>Primary circ<br>modified by<br>23.26<br>Combi loss<br>0.0<br>Total heat re<br>231.94<br>CWWHRS I<br>0.0<br>PV diverter<br>0.0<br>Solar DHW<br>0.0<br>FGHRS DH<br>0.0<br>Output from<br>231.94<br>if (64) m < 0                                  | )m [ (47) – V<br>Vww from Ap<br>24.53<br>suit loss for eau<br>factor from Ta<br>21.01<br>for each mont<br>0.0<br>equired for wal<br>205.11<br>DHW input cal<br>0.0<br>DHW input calculate<br>0.0<br>W inpu | rs] + (47), else<br>pendix G3 or r<br>27.16<br>ch month from<br>ble H4 if there<br>23.26<br>h from Table 3<br>0.0<br>ter heating ca<br>218.03<br>culated using<br>0.0<br>lculated using<br>0.0<br>lculated using<br>0.0<br>ated using App<br>0.0<br>for each mont<br>218.03<br>Energy used                                                               | (H12) from Ap<br>26.28<br>Table 3<br>is solar wate<br>22.51<br>3a, 3b or 3c (e<br>0.0<br>iculated for ea<br>192.15<br>Appendix G (i<br>0.0<br>ndix H (negat<br>0.0<br>pendix G (neg<br>0.0<br>it, kWh/month<br>192.15<br>by instantanee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | m<br>pendix H (as :<br>27.16<br>r heating and<br>23.26<br>enter "0" if not<br>0.0<br>ach month (62<br>186.54<br>negative quan<br>0.0<br>(negative quantity) (<br>0.0<br>ive quantity) (<br>0.0<br>active                           | applicable).<br>26.28<br>a cylinder the<br>22.51<br>a combi boile<br>0.0<br>) = 0.85 × (45<br>168.4<br>tity) (enter "0<br>0.0<br>enter "0" if no<br>0.0<br>(63a) + (63b<br>168.4<br>nower(s), kWh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27.16<br>ermostat, althu<br>23.26<br>r)<br>0.0<br>i) + (46) + (57<br>166.49<br>" if no WWHR<br>0.0<br>" if no PV div<br>0.0<br>solar contribu<br>0.0<br>no FGHRS ci<br>0.0<br>) + (63c) + (63<br>166.49                                                                                  | 27.16<br>Dugh not for D<br>23.26<br>0.0<br>) + (59) + (61)<br>172.97<br>S contribution<br>0.0<br>erter contribut<br>0.0<br>ution to water<br>0.0<br>0.0<br>172.97<br>Appendix J)                                                                | 26.28<br>HW-only heat<br>22.51<br>0.0<br>174.7<br>to water heat<br>0.0<br>ion)<br>0.0<br>heating)<br>0.0<br>water heating<br>0.0<br>174.7                 | 27.16<br>t networks)<br>23.26<br>0.0<br>194.42<br>ting)<br>0.0<br>0.0<br>0.0<br>0.0<br>194.42                           | 26.28<br>22.51<br>0.0<br>206.23<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>206.23           | 27.16<br>23.26<br>0.0<br>229.48<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>229.48<br>Total =          | (57)<br>(59)<br>(61)<br>(62)<br>(63a)<br>(63b)<br>(63c)<br>(63d)<br>(63d)<br>(64)<br>2346.45          |
| (57)m = (56<br>where Vs is<br>27.16<br>Primary circ<br>modified by<br>23.26<br>Combi loss<br>0.0<br>Total heat re<br>231.94<br>CWWHRS I<br>0.0<br>PV diverter<br>0.0<br>Solar DHW<br>0.0<br>FGHRS DH<br>0.0<br>Output from<br>231.94<br>if (64) m < 0<br>0.0                           | )m □ [(47) - V<br>Vww from Ap,<br>24.53<br>uit loss for ear<br>factor from Ta<br>21.01<br>for each mont<br>0.0<br>equired for wai<br>205.11<br>DHW input cal<br>0.0<br>DHW input cal<br>0.0<br>W input calculate<br>0.0<br>W input ca  | rs] + (47), else<br>pendix G3 or r<br>27.16<br>ch month from<br>ble H4 if there<br>23.26<br>h from Table 3<br>0.0<br>ter heating ca<br>218.03<br>culated using<br>0.0<br>lculated using<br>0.0<br>lculated using<br>0.0<br>lated using Appe<br>0.0<br>for each mont<br>218.03<br>Energy used 1<br>0.0                                                    | (H12) from Ap<br>26.28<br>Table 3<br>is solar wate<br>22.51<br>33, 3b or 3c (e<br>0.0<br>lculated for ea<br>192.15<br>Appendix G (i<br>0.0<br>ndix H (negat<br>0.0<br>pendix G (neg<br>0.0<br>th, kWh/month<br>192.15<br>by instantaned<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m<br>pendix H (as :<br>27.16<br>r heating and<br>23.26<br>enter "0" if not<br>0.0<br>ach month (62<br>186.54<br>negative quan<br>0.0<br>(negative quantity) (<br>0.0<br>ive quantity) (<br>0.0<br>active                           | applicable).<br>26.28<br>a cylinder the<br>22.51<br>a combi boile<br>0.0<br>) = 0.85 × (45<br>168.4<br>tity) (enter "0<br>0.0<br>enter "0" if no<br>0.0<br>(63a) + (63b<br>168.4<br>nower(s), kWh<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27.16<br>ermostat, altho<br>23.26<br>r)<br>0.0<br>i) + (46) + (57<br>166.49<br>" if no WWHR<br>0.0<br>" if no PV div<br>0.0<br>solar contribu<br>0.0<br>no FGHRS ci<br>0.0<br>) + (63c) + (63<br>166.49                                                                                  | 27.16<br>Dugh not for D<br>23.26<br>0.0<br>) + (59) + (61)<br>172.97<br>S contribution<br>0.0<br>erter contribut<br>0.0<br>ution to water<br>0.0<br>ontribution to water<br>0.0<br>172.97<br>Appendix J)<br>0.0                                 | 26.28<br>HW-only heat<br>22.51<br>0.0<br>174.7<br>to water heat<br>0.0<br>to water heating<br>0.0<br>water heating<br>0.0<br>174.7                        | 27.16<br>t networks)<br>23.26<br>0.0<br>194.42<br>ting)<br>0.0<br>0.0<br>0.0<br>0.0<br>194.42<br>0.0                    | 26.28<br>22.51<br>0.0<br>206.23<br>0.0<br>0.0<br>0.0<br>0.0<br>206.23<br>0.0           | 27.16<br>23.26<br>0.0<br>229.48<br>0.0<br>0.0<br>0.0<br>0.0<br>229.48<br>Total =<br>0.0          | (57)<br>(59)<br>(61)<br>(62)<br>(63a)<br>(63b)<br>(63c)<br>(63d)<br>(63d)<br>(64)<br>2346.45<br>(64a) |
| (57)m = (56<br>where Vs is<br>27.16<br>Primary circ<br>modified by<br>23.26<br>Combi loss<br>0.0<br>Total heat re<br>231.94<br>CWWHRS 1<br>0.0<br>PV diverter<br>0.0<br>Solar DHW<br>0.0<br>FGHRS DH<br>0.0<br>Output from<br>231.94<br>if (64) m < 0<br>0.0<br>Heat gains 1<br>70.07  | )m □ [(47) - V<br>Vww from Ap,<br>24.53<br>wit loss for ear<br>factor from Ta<br>21.01<br>for each mont<br>0.0<br>equired for war<br>205.11<br>DHW input cal<br>0.0<br>DHW input calculate<br>0.0<br>W in  | rs] + (47), else<br>pendix G3 or r<br>27.16<br>ch month from<br>ble H4 if there<br>23.26<br>h from Table 3<br>0.0<br>ter heating ca<br>218.03<br>culated using<br>0.0<br>lculated using<br>0.0<br>lculated using<br>0.0<br>dusing Appe<br>0.0<br>for each mont<br>218.03<br>Energy used 1<br>0.0<br>culated using Appe<br>0.0<br>for each mont<br>218.03 | (112) from Ap<br>26.28<br>Table 3<br>e is solar wate<br>22.51<br>3a, 3b or 3c (e<br>0.0<br>Iculated for ea<br>192.15<br>Appendix G (i<br>0.0<br>Appendix G (i<br>0.0<br>ndix H (negat<br>0.0<br>pendix G (neg<br>0.0<br>th, kWh/month<br>192.15<br>by instantaneo<br>0.0<br>onth 0.25 x [0.2<br>50 x [0.2<br>50 x [0.2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | m<br>pendix H (as :<br>27.16<br>r heating and<br>23.26<br>enter "0" if not<br>0.0<br>ich month (62<br>186.54<br>negative quant<br>0.0<br>ive quantity) (i<br>0.0<br>ive quantity) (i<br>0.0 | applicable).<br>26.28<br>a cylinder the<br>22.51<br>a combi bolle<br>0.0<br>) = 0.85 × (45<br>168.4<br>tity) (enter "0<br>0.0<br>enter "0" if no<br>0.0<br>(63a) + (63b)<br>168.4<br>hower(s), kWh<br>0.0<br>1) + (64a)] + (65a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27.16<br>ermostat, altho<br>23.26<br>r)<br>0.0<br>i) + (46) + (57<br>166.49<br>" if no WWHR<br>0.0<br>" if no PV div<br>0.0<br>" if no PV div<br>0.0<br>solar contribu<br>0.0<br>no FGHRS ct<br>0.0<br>) + (63c) + (63c)<br>166.49<br>//month (from<br>0.0<br>8 x [(46) + (65c) + (65c)) | 27.16<br>23.26<br>0.0<br>) + (59) + (61)<br>172.97<br>S contribution<br>0.0<br>erter contribut<br>0.0<br>ution to water<br>0.0<br>ontribution to v<br>0.0<br>172.97<br>Appendix J)<br>0.0<br>57) + (59) ]                                       | 26.28<br>HW-only heat<br>22.51<br>0.0<br>174.7<br>to water heat<br>0.0<br>ion)<br>0.0<br>heating)<br>0.0<br>water heating<br>0.0<br>174.7                 | 27.16<br>t networks)<br>23.26<br>0.0<br>194.42<br>ting)<br>0.0<br>0.0<br>0.0<br>194.42<br>0.0                           | 26.28<br>22.51<br>0.0<br>206.23<br>0.0<br>0.0<br>0.0<br>0.0<br>206.23<br>0.0           | 27.16<br>23.26<br>0.0<br>229.48<br>0.0<br>0.0<br>0.0<br>0.0<br>229.48<br>Total =<br>0.0          | (57)<br>(59)<br>(61)<br>(62)<br>(63a)<br>(63b)<br>(63c)<br>(63d)<br>(63d)<br>(64)<br>2346.45<br>(64a) |
| (57)m = (56<br>where Vs is<br>27.16<br>Primary circ<br>modified by<br>23.26<br>Combi loss<br>0.0<br>Total heat re<br>231.94<br>CWWHRS 10<br>0.0<br>PV diverter<br>0.0<br>Solar DHW<br>0.0<br>FGHRS DH<br>0.0<br>Output from<br>231.94<br>if (64) m < 0<br>0.0<br>Heat gains 1<br>78.97 | )m □ [(47) - V<br>Vww from Ap,<br>24.53<br>uit loss for eau<br>factor from Ta<br>21.01<br>for each mont<br>0.0<br>equired for wai<br>205.11<br>DHW input cal<br>0.0<br>DHW input calculate<br>0.0<br>W input calculate<br>0.0<br>N water heater<br>205.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rs] + (47), else<br>pendix G3 or r<br>27.16<br>ch month from<br>ble H4 if there<br>23.26<br>h from Table 3<br>0.0<br>ter heating ca<br>218.03<br>culated using<br>0.0<br>lculated using<br>0.0<br>lculated using<br>0.0<br>dusing Appe<br>0.0<br>for each mont<br>218.03<br>Energy used 1<br>0.0<br>ating, kWh/mc<br>74.34                               | (H12) from Ap<br>26.28<br>Table 3<br>is solar wate<br>22.51<br>Ba, 3b or 3c (e<br>0.0<br>iculated for ea<br>192.15<br>Appendix G (i<br>0.0<br>Appendix G (i<br>0.0<br>mdix H (negat<br>0.0<br>iculated for ea<br>192.15<br>Appendix G (i<br>0.0<br>iculated for ea<br>192.15<br>Appendix G (i<br>0.0<br>iculated for ea<br>192.15<br>Appendix G (i<br>0.0<br>iculated for ea<br>192.15<br>Appendix G (i<br>0.0<br>iculated for ea<br>192.15<br>Appendix G (iculated for ea<br>0.0<br>iculated for ea<br>0.0<br>iculate | m<br>pendix H (as :<br>27.16<br>r heating and<br>23.26<br>wher "0" if not<br>0.0<br>ach month (62<br>186.54<br>megative quart<br>0.0<br>(negative quartity) (<br>0.0<br>ive quantity) (<br>0.0<br>ive quantity) (<br>0.0<br>h(64) = (62) + 186.54<br>bus electric sh<br>0.0<br>$85 \times (45) + (6)$<br>63.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | applicable).<br>26.28<br>a cylinder the<br>22.51<br>a combi boile<br>0.0<br>) = 0.85 × (45<br>168.4<br>tity) (enter "0<br>0.0<br>tity) (enter "0" if no<br>0.0<br>(63a) + (63b)<br>168.4<br>hower(s), kWh<br>0.0<br>1) + (64a)]                                                                                                                                                                                                                                                                                             | 27.16<br>ermostat, althe<br>23.26<br>r)<br>0.0<br>0) + (46) + (57<br>166.49<br>" if no WWHR<br>0.0<br>" if no PV divi<br>0.0<br>solar contribu<br>0.0<br>no FGHRS co<br>0.0<br>) + (63c) + (63c)<br>166.49<br>// month (from<br>0.0<br>0.8 x [(46) + (57)<br>57.2                        | 27.16<br>Dugh not for D<br>23.26<br>0.0<br>) + (59) + (61)<br>172.97<br>S contribution<br>0.0<br>erter contribut<br>0.0<br>ution to water<br>0.0<br>ontribution to water<br>0.0<br>3d)<br>172.97<br>Appendix J)<br>0.0<br>57) + (59) ]<br>59.36 | 26.28<br>HW-only heat<br>22.51<br>0.0<br>174.7<br>to water heat<br>0.0<br>ion)<br>0.0<br>heating)<br>0.0<br>water heating<br>0.0<br>174.7<br>0.0<br>59.87 | 27.16<br>t networks)<br>23.26<br>0.0<br>194.42<br>ting)<br>0.0<br>0.0<br>0.0<br>194.42<br>0.0<br>194.42<br>0.0<br>66.49 | 26.28<br>22.51<br>0.0<br>206.23<br>0.0<br>0.0<br>0.0<br>0.0<br>206.23<br>0.0<br>206.23 | 27.16<br>23.26<br>0.0<br>229.48<br>0.0<br>0.0<br>0.0<br>0.0<br>229.48<br>Total =<br>0.0<br>78.15 | (57)<br>(59)<br>(61)<br>(62)<br>(63a)<br>(63b)<br>(63c)<br>(63d)<br>(63d)<br>2346.45<br>(64a)<br>(65) |

Internal gains (see Tables 5 and 5a)

| Metabolic gains (Table 5), watts |                |               |               |               |                |        |        |        |        |        |        |      |
|----------------------------------|----------------|---------------|---------------|---------------|----------------|--------|--------|--------|--------|--------|--------|------|
| 121.83                           | 121.83         | 121.83        | 121.83        | 121.83        | 121.83         | 121.83 | 121.83 | 121.83 | 121.83 | 121.83 | 121.83 | (66) |
| Lighting gai                     | ins (calculate | d in Appendix | L, equation I | _12 or L12a), | also see Table | e 5    |        |        |        |        |        |      |

| Lighting gains (calculated in Appendix L, equation L12 or L12a), also see Table 5 |                |                |                |                |              |        |        |        |        |        |        |      |
|-----------------------------------------------------------------------------------|----------------|----------------|----------------|----------------|--------------|--------|--------|--------|--------|--------|--------|------|
| 109.24                                                                            | 120.94         | 109.24         | 112.88         | 109.24         | 112.88       | 109.24 | 109.24 | 112.88 | 109.24 | 112.88 | 109.24 | (67) |
| Appliances of                                                                     | ains (calculat | ted in Append  | ix L, equation | L16 or L16a),  | also see Tab | le 5   |        |        |        |        |        |      |
| 216.58                                                                            | 218.82         | 213.16         | 201.1          | 185.88         | 171.58       | 162.02 | 159.78 | 165.44 | 177.5  | 192.72 | 207.02 | (68) |
| Cooking gair                                                                      | ns (calculated | in Appendix I  | L, equation L1 | 8 or L18a), al | so see Table | 5      |        |        |        |        |        |      |
| 35.18                                                                             | 35.18          | 35.18          | 35.18          | 35.18          | 35.18        | 35.18  | 35.18  | 35.18  | 35.18  | 35.18  | 35.18  | (69) |
| Pumps and                                                                         | fans gains (Ta | able 5a)       |                |                |              |        |        |        |        |        |        |      |
| 0.0                                                                               | 0.0            | 0.0            | 0.0            | 0.0            | 0.0          | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | (70) |
| Losses e.g.                                                                       | evaporation (i | negative value | es) (Table 5)  |                |              |        |        |        |        |        |        |      |
| -97.46                                                                            | -97.46         | -97.46         | -97.46         | -97.46         | -97.46       | -97.46 | -97.46 | -97.46 | -97.46 | -97.46 | -97.46 | (71) |
| Water heatin                                                                      | ng gains (Tabl | e 5)           |                |                |              |        |        |        |        |        |        |      |
| 106.14                                                                            | 103.97         | 99.92          | 91.22          | 85.85          | 80.25        | 76.89  | 79.78  | 83.16  | 89.37  | 97.72  | 105.04 | (72) |
| Total interna                                                                     | l gains        |                |                |                |              |        |        |        |        |        |        |      |
| 491.5                                                                             | 503.28         | 481.86         | 464.75         | 440.51         | 424.25       | 407.7  | 408.34 | 421.03 | 435.65 | 462.86 | 480.84 | (73) |
|                                                                                   |                |                |                |                |              |        |        |        |        |        |        |      |

#### 6. Solar gains

| Solar gains in watts, calculated for each month |                                  |               |         |         |         |         |         |        |        |        |        |      |
|-------------------------------------------------|----------------------------------|---------------|---------|---------|---------|---------|---------|--------|--------|--------|--------|------|
| Jan                                             | Feb                              | Mar           | Apr     | May     | June    | Jul     | Aug     | Sep    | Oct    | Nov    | Dec    | (83) |
| 150.54                                          | 271.72                           | 412.41        | 579.11  | 710.82  | 733.03  | 695.34  | 592.9   | 469.48 | 311.26 | 183.09 | 127.03 | ()   |
| Total gains -                                   | <ul> <li>internal and</li> </ul> | solar (watts) |         |         |         |         |         |        |        |        |        |      |
| 642.03                                          | 775.0                            | 894.28        | 1043.86 | 1151.34 | 1157.28 | 1103.04 | 1001.24 | 890.51 | 746.91 | 645.96 | 607.87 | (84) |

#### 7. Mean internal temperature (heating season)

| Temperature                                   | e during heatir                                 | ng periods in t                                    | he living area                                    | from Table 9,                             | Th1 (°C)                    |             |             |             | 2           | 1.0         | 21.0        | (85) |
|-----------------------------------------------|-------------------------------------------------|----------------------------------------------------|---------------------------------------------------|-------------------------------------------|-----------------------------|-------------|-------------|-------------|-------------|-------------|-------------|------|
| Utilisation fa<br>Jan<br>0.91<br>Mean interna | ctor for gains<br>Feb<br>0.86<br>al temperature | for living area<br>Mar<br>0.77<br>e in living area | i, ⊡1,m (see T<br>Apr<br>0.63<br>a T1 (follow ste | able 9a)<br>May<br>0.47<br>eps 3 and 4 in | June<br>0.33<br>1 Table 9c) | Jul<br>0.24 | Aug<br>0.27 | Sep<br>0.45 | Oct<br>0.71 | Nov<br>0.87 | Dec<br>0.92 | (86) |
| 0.91<br>Mean interna                          | 0.86<br>al temperature                          | 0.77<br>e in living area                           | 0.63<br>a T1 (follow ste                          | 0.47<br>eps 3 and 4 in                    | 0.33<br>Table 9c)           | 0.24        | 0.27        | 0.45        | 0.71        | 0.87        | 0.92        |      |
| 19.65                                         | 20.0                                            | 20.38                                              | 20.74                                             | 20.92                                     | 20.98                       | 21.0        | 20.99       | 20.95       | 20.68       | 20.13       | 19.59       | (87) |
| 20.26                                         | 20.26                                           | 20.26 20.26                                        | 20.27                                             | 20.28                                     | 20.29 (°C)                  | 20.29       | 20.29       | 20.28       | 20.28       | 20.27       | 20.27       | (88) |
| Utilisation fa                                | ctor for gains                                  | for rest of dw                                     | elling, □2,m (s                                   | see Table 9a)                             |                             |             |             |             |             |             |             |      |
| 0.9                                           | 0.84                                            | 0.75                                               | 0.6                                               | 0.44                                      | 0.29                        | 0.2         | 0.23        | 0.41        | 0.67        | 0.85        | 0.92        | (89) |
| Mean interna<br>19.02                         | al temperature<br>19.36                         | e in the rest of<br>19.72                          | f dwelling T2<br>20.06                            | 20.22                                     | 20.28                       | 20.29       | 20.29       | 20.25       | 20.02       | 19.5        | 18.98       | (90) |
| Living area f                                 | raction                                         |                                                    |                                                   |                                           |                             |             |             |             | 0           | .38         | 0.38        | (91) |
| Mean interna<br>19.26                         | al temperature<br>19.6                          | e (for the who<br>19.97                            | le dwelling)<br>20.32                             | 20.48                                     | 20.54                       | 20.55       | 20.55       | 20.51       | 20.27       | 19.74       | 19.21       | (92) |
| Adjusted me                                   | an internal te                                  | mperature:                                         | 00.00                                             | 00.40                                     | 00.54                       | 00.55       | 00.55       | 00.54       | 00.07       | 40.74       | 10.01       |      |
| 19.20                                         | 19.0                                            | 19.97                                              | 20.32                                             | 20.40                                     | 20.34                       | 20.55       | 20.55       | 20.51       | 20.27       | 19.74       | 19.21       | (93) |

#### 8. Space heating requirement

| Utilisation fa | ctor for gains. | . 🗆 m:         |               |                |        |        |         |        |        |        |         |          |
|----------------|-----------------|----------------|---------------|----------------|--------|--------|---------|--------|--------|--------|---------|----------|
| Jan            | Feb             | Mar            | Apr           | May            | June   | Jul    | Aug     | Sep    | Oct    | Nov    | Dec     | (94)     |
| 0.89           | 0.83            | 0.74           | 0.6           | 0.45           | 0.3    | 0.21   | 0.25    | 0.42   | 0.67   | 0.84   | 0.9     | ()       |
| Useful gains   | s, ⊡mGm , W     |                |               |                |        |        |         |        |        |        |         |          |
| 570.46         | 642.61          | 664.99         | 626.29        | 512.65         | 351.37 | 235.66 | 246.17  | 373.53 | 502.94 | 539.98 | 547.47  | (95)     |
| Monthly ave    | rade external   | temperature f  | from Table U1 |                |        |        |         |        |        |        |         |          |
| 4.3            | 4.9             | 6.5            | 8.9           | 11.7           | 14.6   | 16.6   | 16.4    | 14.1   | 10.6   | 7.1    | 4.2     | (96)     |
|                | to for moon in  | tornal tompor  | atura         |                |        |        |         |        |        |        |         | (30)     |
| Heat loss ra   | le lor mean in  | itemai temper  | ature         | 504.00         | 055.00 |        | 0.17.00 |        | 500 74 | 774.04 |         |          |
| 935.4          | 916.28          | 836.79         | 697.67        | 534.63         | 355.68 | 236.61 | 247.69  | 386.48 | 588.71 | //4.61 | 926.06  | (97)     |
| Space heati    | ng requiremer   | nt for each mo | onth          |                |        |        |         |        |        |        |         |          |
| 271.51         | 183.91          | 127.82         | 51.39         | 16.36          | 0.0    | 0.0    | 0.0     | 0.0    | 63.82  | 168.94 | 281.67  | (98a)    |
|                |                 |                |               |                |        |        |         |        |        |        | Total = | 1165 / 1 |
| Solar space    | heating calcu   | lated using A  | opendix H (ne | native quantit | V)     |        |         |        |        |        | iotai - | 1100.41  |
| 271.51         | 183 91          | 127 82         | 51.39         | 16.36          | 00     | 0.0    | 0.0     | 0.0    | 63.82  | 168 94 | 281.67  | (001)    |
| 211.01         | 100.01          | 121.02         | 01.00         | 10.00          | 0.0    | 0.0    | 0.0     | 0.0    | 00.02  | 100.04 | 201.01  | (980)    |

| 211.01      | 100.51        | 121.02         | 01.00           | 10.00          | 0.0 | 0.0 | 0.0 | 0.0 | 00.02 | 100.04 | 201.01  | (980)   |
|-------------|---------------|----------------|-----------------|----------------|-----|-----|-----|-----|-------|--------|---------|---------|
|             |               |                |                 |                |     |     |     |     |       |        | Total = | 1165.41 |
| Space heati | ng requiremei | nt for each mo | onth after sola | r contribution |     |     |     |     |       |        |         |         |
| 0.0         | 0.0           | 0.0            | 0.0             | 0.0            | 0.0 | 0.0 | 0.0 | 0.0 | 0.0   | 0.0    | 0.0     | (98c)   |
| Space heati | ng requiremer | nt in kWh/m²/y | /ear            |                |     |     |     |     |       | 14.82  | 14.82   | (99)    |

| Heat loss ra   | ite              |                 |                |               |                   |         |         |     |     |      |         |         |
|----------------|------------------|-----------------|----------------|---------------|-------------------|---------|---------|-----|-----|------|---------|---------|
| Jan            | Feb              | Mar             | Apr            | Мау           | June              | Jul     | Aug     | Sep | Oct | Nov  | Dec     | (100)   |
| 0.0            | 0.0              | 0.0             | 0.0            | 0.0           | 562.57            | 442.88  | 453.27  | 0.0 | 0.0 | 0.0  | 0.0     | . ,     |
| Utilisation fa | actor for loss ( | ⊐m              |                |               |                   |         |         |     |     |      |         |         |
| 0.0            | 0.0              | 0.0             | 0.0            | 0.0           | 0.97              | 0.98    | 0.97    | 0.0 | 0.0 | 0.0  | 0.0     | (101)   |
| Useful loss,   | □mLm (watts      | S)              |                |               |                   |         |         |     |     |      |         |         |
| 0.0            | 0.0              | 0.0             | 0.0            | 0.0           | 544.25            | 434.53  | 441.21  | 0.0 | 0.0 | 0.0  | 0.0     | (102)   |
| Gains          |                  |                 |                |               |                   |         |         |     |     |      |         |         |
| 0.0            | 0.0              | 0.0             | 0.0            | 0.0           | 1303.07           | 1242.13 | 1124.89 | 0.0 | 0.0 | 0.0  | 0.0     | (103)   |
| Cross cooli    |                  | at for month i  | ubala duallia  |               | (LAMb)            |         |         |     |     |      |         | (100)   |
| Space cooli    | ng requireme     | nt for month, v | whole awelling | g, continuous | (KVVII)<br>546.35 | 600.85  | 508 66  | 0.0 | 0.0 | 0.0  | 0.0     |         |
| 0.0            | 0.0              | 0.0             | 0.0            | 0.0           | 040.00            | 000.00  | 506.00  | 0.0 | 0.0 | 0.0  | 0.0     | (104)   |
|                |                  |                 |                |               |                   |         |         |     |     |      | Total = | 1655.86 |
| Cooled frac    | tion             |                 |                |               |                   |         |         |     |     | 0.81 | 0.81    | (105)   |
| Intermittenc   | y factor         |                 |                |               |                   |         |         |     |     |      |         |         |
| 0.0            | 0.0              | 0.0             | 0.0            | 0.0           | 0.25              | 0.25    | 0.25    | 0.0 | 0.0 | 0.0  | 0.0     | (106)   |
| Space cooli    | na requireme     | nt for month    |                |               |                   |         |         |     |     |      |         | . ,     |
| 0.0            | 0.0              | 0.0             | 0.0            | 0.0           | 110.53            | 121.56  | 102.91  | 0.0 | 0.0 | 0.0  | 0.0     | (107)   |
|                |                  |                 |                |               |                   |         |         |     |     |      | T-1-1   | (107)   |
|                |                  |                 |                |               |                   |         |         |     |     |      | iotal = | 335     |
| Space cooli    | ng requireme     | nt in kWh/m²/   | year           |               |                   |         |         |     |     | 4.26 | 4.26    | (108)   |
|                |                  |                 |                |               |                   |         |         |     |     |      |         |         |
| 8f. Fabric E   | nergy Efficien   | CV              |                |               |                   |         |         |     |     |      |         |         |
|                | 57               | ,               |                |               |                   |         |         |     |     |      |         |         |
|                |                  |                 |                |               |                   |         |         |     |     |      |         |         |
| Fabric Ener    | gy Efficiency    |                 |                |               |                   |         |         |     |     | 0.0  | 0.0     | (109)   |

#### 9b. Energy requirements - Heat networks

Fraction of space heat from secondary/supplementary heating 0.0 (301) Fraction of space heat from heat network 1.0 (302) Where the heat network is not listed in the PCDB: Fraction of heat from CHP 1.0 (303a) Fraction of heat from heat source 2 0.0 (303b) Fraction of heat from heat source 3 0.0 (303c) Fraction of heat from heat source 4 0.0 (303d) Fraction of heat from heat source 5 0.0 (303e) Whether the heat network is listed in the PCDB or not: Factor for control and charging method (Table 4c(3)) for space heating 1.05 (305)

Factor for charging method (Table 4c(3)) for water heating

(305) Factor for charging method (Table 4c(3)) for water heating 1.0 (305a) Distribution loss factor (Table 12c) for heat network - set to 1 if HN listed in PCDB 1.5 (306) Space heating kWh/year Annual space heating requirement 0.0 Heat required from heat network 0.0 Where the heat network is not listed in the PCDB: Space heat from CHP 1835.52 (307a) Space heat from heat source 2 0.0 (307b) Space heat from heat source 3 0.0 (307c) Space heat from heat source 4 0.0 (307d) Space heat from heat source 5 0.0 (307e) Whether the heat network is listed in the PCDB or not: Efficiency of secondary/supplementary heating system in % 0.0 (308) Space heating fuel for secondary/supplementary system 0.0 (309) Water heating Annual water heating requirement 2346.45 If DHW from heat network: Heat required from heat network 0.0 (310) Where the heat network is not listed in the PCDB: Water heat from CHP 3519.68 (310a) Water heat from heat source 2 0.0 (310b) Water heat from heat source 3 0.0 (310c) Water heat from heat source 4 0.0 (310d) Water heat from heat source 5 0.0 (310e) If DHW by immersion or instantaneous heater within dwelling: Efficiency of water heater 0.0 (311) Water heated by immersion or instantaneous heater 0.0 (312) Electricity used for instantaneous electric shower(s)

| (312)                                                                                        |          |          |        |
|----------------------------------------------------------------------------------------------|----------|----------|--------|
| Electricity used for instantaneous electric shower(s)<br>0.0<br>(312a)                       |          |          |        |
| (or ca)                                                                                      |          |          |        |
| 53.55<br>(313)                                                                               |          |          |        |
| Electricity used for heat distribution<br>53.55<br>(313)                                     |          |          |        |
| Cooling System Seasonal Energy Efficiency Batio                                              |          |          |        |
| 0.0<br>(314)                                                                                 |          |          |        |
| Space cooling (if there is a fixed cooling system $\infty$                                   |          |          |        |
| (315)                                                                                        |          |          |        |
| Electricity for pumps and fans within dwelling                                               |          |          |        |
| mechanical ventilation - balanced, extract or positive input from outside<br>320.8<br>(312a) |          |          |        |
| warm air heating system fans<br>0.0<br>(312a)                                                |          |          |        |
| pump for solar water heating<br>0.0<br>(312a)                                                |          |          |        |
| Total electricity for pumps and fans<br>320.8<br>(331)                                       |          |          |        |
| Electricity for lighting<br>187.42<br>(332)                                                  |          |          |        |
| EnergyRequirements - Energy used in dwelling                                                 |          |          |        |
|                                                                                              |          |          |        |
|                                                                                              | 0.0      | 0.0      |        |
| wind                                                                                         | 0.0      | 0.0      |        |
|                                                                                              |          |          |        |
| EnergyRequirements - Energy used exponed                                                     |          |          |        |
| PV                                                                                           | 0.0      | 0.0      |        |
| Wind                                                                                         | 0.0      | 0.0      |        |
| Hydro                                                                                        |          |          |        |
| Appendix Q items: annual energy                                                              |          |          |        |
|                                                                                              | kWh/vear | kWh/vear |        |
| energy saved                                                                                 | 0.0      | 0.0      | (336a) |
| energy used                                                                                  | 0.0      | 0.0      | (337a) |
| energy saved                                                                                 | 0.0      | 0.0      | (336b) |
| energy used                                                                                  | 0.0      | 0.0      | (337b) |
| Total delivered energy for all uses                                                          | 00       | 00       | ,      |
|                                                                                              |          |          |        |

#### 10b. Fuel costs – Individual heating systems including micro-CHP

#### Where the heat network is not listed in the PCDB:

|                                  | Heat or Fuel<br>required<br>kWh/year | Fuel price (Table 12) |                | Fuel cost £/year |       |
|----------------------------------|--------------------------------------|-----------------------|----------------|------------------|-------|
| Space heating from CHP           | x<br>1835.52                         | 4.44                  | x<br>0.01<br>= | 81.5             | (340a |
| Space heating from heat source 2 | x<br>0.0                             | 0.0                   | x<br>0.01<br>= | 0.0              | (340b |
| Space heating from heat source 3 | x<br>0.0                             | 0.0                   | x<br>0.01<br>= | 0.0              | (340c |
| Space heating from heat source 4 | x<br>0.0                             | 0.0                   | x<br>0.01      | 0.0              | (340d |

| Space heating from heat source 5                      | x<br>0.0     | 0.0              | x<br>0.01<br>= | 0.0        | (340e          |
|-------------------------------------------------------|--------------|------------------|----------------|------------|----------------|
| Where the heat network is not listed in the PCDB:     |              |                  |                |            |                |
| Space heating from PCDB heat network                  |              |                  | x<br>0.01<br>= |            | (340)          |
| Space heating fuel for secondary/supplementary system |              | 0.0              | x<br>0.01<br>= | 0.0        | (341)          |
| If DHW from heat network:                             |              |                  |                |            |                |
| Where the heat network is not listed in the PCDB:     |              |                  |                |            |                |
| Water heating from CHP                                | x<br>3519.68 | 4.44             | x<br>0.01<br>= | 156.27     | (342a          |
| Water heating from heat source 2                      | x<br>0.0     | 0.0              | x<br>0.01      | 0.0        | (342b          |
| Water heating from heat source 3                      | x<br>0.0     | 0.0              | x<br>0.01      | 0.0        | (342c          |
| Water heating from heat source 4                      | x<br>0.0     | 0.0              | -<br>x<br>0.01 | 0.0        | (342d          |
| Water heating from heat source 5                      | x<br>0.0     | 0.0              | -<br>x<br>0.01 | 0.0        | (342e          |
| Water heating from PCDB heat network                  |              |                  | =<br>x<br>0.01 |            | (342)          |
| If water heated by immersion heater:                  |              |                  | -              |            |                |
| High-rate fraction (Table 13)<br>Low-rate fraction    |              |                  |                | 0.0<br>0.0 | (343)<br>(344) |
| High-rate cost, or cost for single immersion          |              |                  | х              | 0.0        | (345)          |
|                                                       |              |                  | 0.01<br>=      |            |                |
| Low-rate cost                                         |              |                  | x<br>0.01<br>= | 0.0        | (346)          |
| If water heated by instantaneous water heater         |              |                  | x<br>0.01<br>= | 0.0        | (347)          |
| Energy used by instantaneous electric shower(s)       |              |                  | x<br>0.01<br>= | 0.0        | (347a          |
| Space cooling                                         |              |                  | x<br>0.01      | 0.0        | (348)          |
| Pumps and fans                                        |              |                  | -<br>x<br>0.01 | 52.9       | (349)          |
| Electricity for lighting                              |              |                  | -<br>x<br>0.01 | 30.91      | (350)          |
| Additional standing charges (Table 12)                |              |                  | =              | 92.0       | (351)          |
| energy saved or generated                             |              | 0.0              | x<br>0.01<br>= | 0.0        |                |
| energy saved                                          |              | energySavedPrice | x<br>0.01      | 0.0        |                |
| energy used                                           |              | energyUsedPrice  | x<br>0.01      | 0.0        |                |
| energy saved                                          |              | energySavedPrice | x<br>0.01      | 0.0        | (353b          |
| energy used                                           |              | energyUsedPrice  | x              | 0.0        | (354b          |

| Total energy cost                                                                                                                                                                |                      | =<br>413                           | 6.58                 | 413.58               | (355)                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------|----------------------|----------------------|-------------------------|
| 11a. SAP rating – Individual heating systems including micro-CHP                                                                                                                 |                      |                                    |                      |                      |                         |
| Energy cost deflator<br>Energy cost factor (ECF)<br>SAP rating                                                                                                                   |                      | 0.36<br>1.2<br>80.4                | 6                    | 0.36<br>1.2<br>80.48 | (356)<br>(357)<br>(358) |
| 12b. CO2 emissions – Individual heating systems                                                                                                                                  |                      |                                    |                      |                      |                         |
| Where the heat network is not listed in the PCDB<br>CO2 from CHP (space and water heating):<br>Power efficiency of CHP unit (e.g. 25%)<br>Heat efficiency of CHP unit (e.g. 50%) | Energy used kWh/year | 0.0<br>0.0<br>Emission factor from | n CO2/ye             | 0.0<br>0.0<br>ear    | (361)<br>(362)          |
| Space heating from CHP                                                                                                                                                           |                      | Table 12                           | kgCO2/<br>=          | /year                | (363)                   |
| less credit emissions for electricity                                                                                                                                            |                      |                                    | 0.0<br>=<br>0.0      |                      | (364)                   |
| Water heated by CHP<br>less credit emissions for electricity                                                                                                                     |                      |                                    | =<br>0.0<br>=<br>0.0 |                      | (365)<br>(366)          |
| CO2 from other sources of space and water heating (not CHP):                                                                                                                     |                      |                                    |                      |                      |                         |
| Efficiency of heat source 2 (%)                                                                                                                                                  |                      |                                    | =<br>0.0             |                      | (367b)                  |
| Efficiency of heat source 3 (%)                                                                                                                                                  |                      |                                    | = 0.0                |                      | (367c)                  |
| Efficiency of heat source 4 (%)                                                                                                                                                  |                      |                                    | =                    |                      | (367d)                  |
| Efficiency of heat source 5 (%)                                                                                                                                                  |                      |                                    | =                    |                      | (367e)                  |
| CO2 associated with heat source 2                                                                                                                                                |                      |                                    | =                    |                      | (368)                   |
| CO2 associated with heat source 3                                                                                                                                                |                      |                                    | 0.0                  |                      | (369)                   |
| CO2 associated with heat source 4                                                                                                                                                |                      |                                    | 0.0                  |                      | (370)                   |
| CO2 associated with heat source 5                                                                                                                                                |                      |                                    | =                    |                      | (371)                   |

0.0

= 0.0

= 7.84

=

=

Emission factor from

Emission factor from

PCDB

Table 12

CO2/year

CO2/year

kgCO2/year

223.31

kgCO2/year

(371a)

(372)

(373)

(374)

(375)

(375a)

(376)

(377)

Where the heat network is listed in the PCDB: Electrical energy for heat distribution Total CO2 associated with heat networks Space heating (secondary) Water heating by immersion heater or instantaneous heater

Where the heat network is listed in the PCDB:

Space and water heating supplied by heat network

 0.0

 Water heating by immersion heater or instantaneous heater
 =

 0.0

 Energy used by instantaneous electric shower(s)
 =

 Total CO2 associated with space and water heating
 =

 Space cooling
 =

 0.0
 =

 0.0
 =

 0.0
 =

 0.0
 =

 0.0
 =

 0.0
 =

 0.0
 =

 0.0
 =

Energy used kWh/year

Energy used kWh/year

| Electricity for pumps and fans within dwelling |   | =             |       | (378)      | ) |
|------------------------------------------------|---|---------------|-------|------------|---|
|                                                |   | 4             | 4.5   |            |   |
| Electricity for lighting                       |   | =             | :     | (379)      | ) |
|                                                |   | 2             | 27.05 |            |   |
| energy saved or generated                      | х | 0.0           | =     | 0.0        |   |
| Appendix Q items                               |   |               |       |            |   |
|                                                |   |               |       |            |   |
| energy saved                                   | Х | 0.0           | =     | 0.0        |   |
| energy used                                    | х | 0.0           | =     | 0.0        |   |
| energy saved                                   | х | 0.0           | =     | 0.0 (381b) |   |
| energy used                                    | х | 0.0           | =     | 0.0 (382b) |   |
| Total CO2, kg/year                             |   | 3.65          | 3.65  | (384)      |   |
| Dwelling CO2 Emission Rate                     |   | 96.89         | 96.89 | (273)      |   |
| Overall CO2 factor for heat network            |   | Emission fact | tor   |            |   |
| Overall CO2 factor for heat network            |   |               |       | (386)      |   |
|                                                |   |               |       |            |   |

#### 13b. Primary Energy - Individual heating systems including micro-CHP

| Where the heat network is not listed in the PCDB              |                      |                                  |                        |        |
|---------------------------------------------------------------|----------------------|----------------------------------|------------------------|--------|
| CO2 from CHP (space and water heating):                       |                      |                                  |                        |        |
| Power efficiency of CHP unit (e.g. 25%)                       |                      | 0.0                              | 0.0                    | (461)  |
| Heat efficiency of CHP unit (e.g. 50%)                        |                      | 0.0                              | 0.0                    | (462)  |
|                                                               | Energy used kWh/year | Emission factor from<br>Table 12 | CO2/year<br>kgCO2/year |        |
| Space heating from CHP                                        |                      |                                  | =                      | (463)  |
| less credit emissions for electricity                         |                      |                                  | =                      | (464)  |
| Water heated by CHP                                           |                      |                                  | =                      | (465)  |
| less credit emissions for electricity                         |                      |                                  | 0.0                    | (466)  |
| CO2 from other sources of space and water heating (not CHD):  |                      |                                  | 0.0                    |        |
| cos non other sources of space and water nearing (not ering). |                      |                                  |                        |        |
| Efficiency of heat source 2 (%)                               |                      |                                  | =<br>0.0               | (467b) |
| Efficiency of heat source 3 (%)                               |                      |                                  | =                      | (467c) |
| Efficiency of heat source 4 (%)                               |                      |                                  | =                      | (467d) |
| Efficiency of heat source 5 (%)                               |                      |                                  | 0.0                    | (467e) |
|                                                               |                      |                                  | 0.0                    | ()     |
| CO2 associated with heat source 2                             |                      |                                  | = 0.0                  | (68)   |
| CO2 associated with heat source 3                             |                      |                                  | =                      | (69)   |
| CO2 associated with heat source 4                             |                      |                                  | =                      | (70)   |
|                                                               |                      |                                  | 0.0                    |        |
| CO2 associated with heat source 5                             |                      |                                  | =                      | (71)   |
| Where the heat network is listed in the PCDB:                 | Energy used kWh/year | Emission factor from<br>PCDB     | CO2/year<br>kgCO2/year |        |
| Space and water heating supplied by heat network              |                      |                                  | =                      | (371a) |
|                                                               |                      |                                  | 0.0                    |        |
| Where the heat network is listed in the PCDB:                 | Energy used kWh/year | Emission factor from<br>Table 12 | CO2/year<br>kgCO2/year |        |
| Electrical energy for heat distribution                       |                      |                                  | =<br>82.54             | (472)  |
| Total CO2 associated with heat networks                       |                      |                                  | =                      | (473)  |
| Space beating (secondary)                                     |                      |                                  | 2460.69                | (474)  |
| Space reading (SECORDALY)                                     |                      |                                  | - 0.0                  | (474)  |
| Water heating by immersion heater or instantaneous heater     |                      |                                  | =                      | (475)  |
|                                                               |                      |                                  | 0.0                    |        |

|                                                   |   |              | 0.0     |          |        |
|---------------------------------------------------|---|--------------|---------|----------|--------|
| Energy used by instantaneous electric shower(s)   |   |              | =       |          | (475a) |
|                                                   |   |              | 0.0     |          |        |
| Total CO2 associated with space and water heating |   |              | =       |          | (476)  |
|                                                   |   |              | 2460.69 |          |        |
| Space cooling                                     |   |              | =       |          | (477)  |
|                                                   |   |              | 0.0     |          |        |
| Electricity for pumps and fans within dwelling    |   |              | =       |          | (478)  |
|                                                   |   |              | 485.31  |          |        |
| Electricity for lighting                          |   |              | =       |          | (479)  |
|                                                   |   |              | 287.48  |          |        |
| energy saved or generated                         | х | 0.0          | =       | 0.0      |        |
| Appendix Q items                                  |   |              |         |          |        |
| energy saved                                      | х | 0.0          | =       | 0.0      |        |
| energy used                                       | х | 0.0          | =       | 0.0      |        |
| energy saved                                      | х | 0.0          | =       | 0.0 481  | b      |
| energy used                                       | х | 0.0          | =       | 0.0 482  | b:     |
| Total CO2, kg/year                                |   | 3155.38      | 3155.3  | 38 (383) | )      |
| Dwelling CO2 Emission Rate                        |   | 40.12        | 40.12   | (274)    | )      |
| Overall CO2 factor for heat network               |   | Emission fac | ctor    |          |        |
| Overall CO2 factor for heat network               |   |              |         | (386)    | )      |

Laura Plazas Buro Happold Limited 17 Newman Street London W1T 1PD UK

T: +44 (0)207 927 9700 F: +44 (0)870 787 4145 Email: laura.plazas@burohappold.com