HOMEBASE, 84 MANOR ROAD, NORTH SHEEN

APPLICANT NAME: AVANTON RICHMOND DEVELOPMENTS LTD

BASEMENT IMPACT ASSESSMENT

CONTENTS

1.0

PROJECT DESCRIPTION
.
2
4.0 THE PROPOSED BASEMENT
4.1 Basement Development5.0 SITE CONSTRAINTS 3
5.1 Geotechnical Data 3
5.2 Existing Buildings
5.3
5.4 Buried Utilities
5.5 Contamination
5.6 Ground Water and Hydrology

5.7 Unexploded Ordnance$\begin{array}{r}. . .4 \\ . . .4 \\ \hline\end{array}$
8 Flood Risk.$+\ldots . .4$
6.0 BASEMENT SCREENING ASSESSMENT 6
7.1 General7
7
7.2 Effects of the Subterranean Characteristics

7.3 Effects on land stability - tunnels or railway line| |
| :--- |
| ... |

8.0 CONCLUSIONS 9
81 Site and Assessment Verification Form 9

APPENDICES

APPENDIX A_SITE PLAN \& TOPOGRAPHICAL SURVEY

APPENDIX B ARCHITECTURAL DRAWINGS

APPENDIX C GROUND CONDITIONS APPENDIX D_FLOOD RISK ASSESSMENT

1.0 INTRODUCTION

a. This report has been prepared by Manhire Associates Ltd to demonstrate that sufficien investigations have been undertaken to show that the proposed basement will not adversely impact the site, neighbouring properties, and the wider natural environment This includes impacts on groundwater and water transferred via throughflow.
b. The Report describes the groundwater monitoring undertaken on site and measures being taken in the design of the substructures to minimize changes to the groundwater regime.
c. The Report describes the new proposals and appraises the impact on neighbouring buildings, structures and infrastructure in the vicinity as well as drainage, structural stability and the groundwater regime.
d. The Report is prepared for the use of Avanton Richmond Developments Ltd in connection with the development. The report is not intended for and should not be relied upon by any third party, and no responsibility is undertaken to any third party, without the express written agreement of Manhire Associates Ltd. Manhire Associates are Chartered Civil and Structural Engineers. This Basement Impact Assessment has been undertaken in accordance with LBRuT's Basement Assessment User Guide.

2.0 PROJECT DESCRIPTION

The development site is located approximately 600 m northeast of Richmond town centre National Grid Reference 518890,175430. It is accessed via Manor Road, which bounds the site to the east. Railway lines form the north-western and southern boundaries.

The site is located within the boundary of the London Borough of Richmond upon Thames Local Planning Authority.
The site is approximately triangular in shape, covering an area of about 1.842 Ha and is currently occupied by a retail warehouse building (Homebase) in the central third, with associated car bus parking in the north-eastern third and storage areas in the south-western third of the site.

In this pre-redevelopment layout, the site is almost fully paved with several small areas o vegetation and trees throughout the site. These can be seen on the Site Plan Topographica Survey (Point2Surveys Ltd, Drawing No. LS2024/T/01-10 dated August 2018) included in Appendix A to this report
Surrounding land uses are mixed residential and commercial.

3.0 PLANNING HISTORY - ORIGINALLY SUBMITTED APPLICATION

A Planning Application (the 'Application') for the site was originally submitted to the London Borough of Richmond upon Thames ('LBRuT') on 14.02.2019 (Application Ref. 19/0510/FUL) LBRuT resolved to refuse the Application in July 2019 and the Application was referred to the Mayor of London (the 'Mayor') for his Stage 2 review. The Mayor set out, in his Stage 2 Report, that the Proposed Development is of a nature or scale that it would have a significant impact on
the implementation of the London Plan policies on housing and affordable Housing. On 29 July 2019, the Mayor issued a Direction pursuant to Article 7 of the Oder and Powers conferred by Section 2A of the Town and Country Planning Act (1990) that he would act as the Local Planning Authority for the purposes of determining the application.

Since July 2019, amendments were submitted to the Mayor in July 2020. In October 2020, the Mayor granted conditional planning permission subject to the completion of a Section 106 Agreement.
In November 2021, following the adoption of the 2021 London Plan, the scheme was revised for conformity to the new policies as discussions regarding the Section 106 Agreement with the GLA and LBRuT had not been finalised. The current amendments include the amendments considered in November 2021.

This document forms part of a suite of updated documents which have been prepared to ensure compliance with the latest flood guidance.
The proposed development comprises the demolition of the current retail units and the development of 4 No. residential buildings, permeable paving, and soft landscaping. Building A is a part 3, part 4, part 7 and 8 storey building, Building B is an 11 storey building, Building C is a part 8 and 10 storey building and Building D is a part 4, part 7 and part 8 storey building. In addition, a basement plant room is proposed beneath Building A.

4.0 THE PROPOSED BASEMENT

4.1 Basement Development

The new basement is one storey and extends approximately 2.91 m below the existing ground level and is 174 m 2 on plan, measuring approximately $31 \mathrm{~m} \times 6 \mathrm{~m}$
The proposed basement perimeter wall consists of 450 dia contiguous piled walls, required to retain the excavation.
The closest neighbouring property is 30 m away to the east on Manor Road and the closest railway line is approximately 30 m to the west

Guidance has been taken from the London Borough of Richmond Upon Thames Basement Assessment User Guide to understand the requirements of the Basement Assessment process for a range of environmental impacts.
Policy LP11 from the Local Plan relates to basement development, as detailed below.

.11 Subterranean Developments and Basemen

Policy LP 1

Subterranean developments and basements

A. The Councir will resist subterranean and basement development of more than one store below the existin
groul
B. Proposals for subterranean and basement developments will be required to comply with the following:

1. extend to no more than a maximum of 50% of the existing garden land or more than half of any other undeveloped garden area (this excludes the footprint of the original building);
2. Demonstrate the scheme safeguards the structural stability of the existing building, neighbouring duildings and other infrastructure, including related to the highway and transport; a Structural Im ssessment will bee
use natural ventilation and lighting where habitable accommodation is provided;
3. include a minimum of 1 metre naturally draining permeable soil above any part of the basement eneat the garden area, together with a minimum 200 mm drainage layer, and provide a satisfacton ndscaping schem
. beyond, in line with policy LP 21 Flood Risk and Sustainable Drainage;
4. demonstrate as part of a Construction Management Statement that the development will be designed and constructed so as to minimise the impact during construction and occupation stages (in line with the Local Environmental Impacts, Pollution and Land Contamination policy of this Plan);
```
C. Proposals for subterranean and basement
```

railings, will be assessed against the advice set out in the Council's SPDs relating to character and design as
well as the relevant Village Planning Guidance and the forthcoming SPD on Basements and Subterranean
Developments. Applicants will be expected to follow the Council's Good Practice Guide on Basement

Furthermore, the LBRUT planning advice note 'Good Practice Guide on Basement Developments, May 2015 identifies that all basement developments should take into accoun ground conditions, land instability, flooding and drainage. Adequate site investigation information, prepared by a competent person, should be provided to demonstrate that these impacts have been understood. Building Control and associated Regulations determine whether the detailed design of buildings and their foundations will allow the basement to be constructed and used safely. (Refer to Appendix B for details of the proposed basement.

5.0 SITE CONSTRAINTS

5.1 Geotechnical Data

Following the development of the preliminary CSM and assessment of engineering considerations, Fairhurst scoped and designed a preliminary intrusive ground investigation targeted to refine the understanding of the site for geo-environmental and geotechnica purposes.
The preliminary ground investigation was carried out by LMB Geosolutions Ltd, under the management of Fairhurst, between the $21^{\text {st }}$ and 27th of April 2021 with three post-fieldwork monitoring visits between the 5th and 26th of May 2021. All exploratory locations were surveyed for below ground utilities and inspection hand pits were dug to 1.2 m bgl prior to drilling

The original scope of works comprised the following:
5 No. rotary percussive boreholes to 15 m bgl (BH101 to BH 105)
3 No. trial pits to 5 m bgl (TP01 to TP03)
Geotechnical and geo-environmental soil sampling
Installation of groundwater and ground gas monitoring installations at all boreholes
3 No. return monitoring visits across a 1 month period
1 No. round of groundwater sampling
The ground conditions revealed by the investigations were representative of the wider area and were consistent with the BGS records with Made Ground overlying Kempton Park Gravels over London Clay.

The stratigraphy is summarized in Table 1.

Geological Strata		
Geological Unit	Description	Estimated thickness (\mathbf{m})
Surfacing	Brick Paving and subbase (0.1m bgl) and tarmac over roadstone gravel (0.3m bgl)	$0.10-0.30$
Made Ground	Brown to dark brown clayey gravelly sand with occasional brick and concrete cobbles. Gravel sub - angular fine to course flint, brick, concrete and rare clinker	$0.40-2.0$
Kempton Park Gravel Member	Brown to orange slightly gravelly medium to coarse SAND. Gravel sub-angular to rounded medium to course flint.	$1.55-4.10$
London Clay Formation	Dark grey to grey, brown CLAY. Closely fissured.	$1.35-20.70$
Table 1-Geotechnical strata		

Table 1-Geotechnical strata

A second round of ground investigations was undertaken to supplement the existing data in August 2022 by Manhire Associates Geo-Environmental Limited which comprised three boreholes drilled to 30 m . These were supplemented by six windowless sampler holes to maximum of $2^{1 / 2 m}$ depth. Representative soil and water samples were recovered from the boreholes for subsequent laboratory examination and testing; whilst Standard Penetration Tests (SPT) were carried out as appropriate. Standpipes were installed in the three percussive boreholes to allow monitoring of groundwater levels
Details of the ground conditions and monitoring results are presented in Appendix C

5.2 Existing Buildings

The existing building occupying the site is a retail warehouse building (Homebase) which is located in the central third of the site, with associated car / bus parking in the north-eastern third and storage areas associated with Homebase in the south-western third of the site.

5.3 Adjacent Buildings

Surrounding land uses are mixed residential and commercial.
District, Overground and National Rail tracks bound the site to the south and the west.

5.4 Buried Utilities

The pavements and Manor Road to the east of the site contain a number of buried services which have been surveyed and are shown on the topographical survey
Asset plans have been obtained that indicate public foul and surface water sewers to the east of the site on Manor Road
The Foul Sewer on Manor Road to the north of the site is 225 mm in diameter and the surface water sewer is 915 mm in diameter

Records indicate no public sewers within the site demise
Existing utilities are likely to be present on-site associated with the existing development including the electrical substation. Relic foundations and structures may also be presen associated with the historic development of the site

5.5 Contamination

A Phase 1 Geo-Environmental and Geotechnical Preliminary Risk Assessment and a Phase 2 Ground Investigation Report has previously been prepared by Fairhurst as part of the Amended Application. Their Phase I Report identified potential sources of contamination on-site and a moderate risk was identified typically. It recommended that a ground investigation be undertaken mo further quantify potential risks. The Phase 2 investigation undertaken by Fairhurst in July 2021 to und low levels of contamination in 2 trial pits and detected asbestos in 2 samples. The repo found lowended that in areas of proposed soft landscaping the placement of an enginepored recommended that areas of proposed soll lang, he placen on an engineered
 completion or Lhe Lownd bow hisk with limited exceedances in 4 boreholes but were considered Low Risk to the shallow groundwater within the Kempton Park Gravel Member. Assessment of the ground gas indicated Very Low Risk for the site. The report recommended a second round of ground investigations to include boreholes, window sampling groundwater monitoring and geo-environmental and geo technical sampling and testing to supplement the existing data.
The second round of ground investigations undertaken in August 2022 by Manhire Associates Geo-Environmental Limited found that contamination testing found low levels of contamination, which were below the relevant trigger concentrations, however chemical analysis found some contamination above trigger levels in 3 isolated locations which will require limited remediation.

The results of this analysis were in broad agreement with that previously found by Fairhurst.
Details of the ground conditions are presented in Appendix C

5.6 Ground Water and Hydrology

The nearest surface water feature to the site is a pond located approximately 310 m south of the site. The River Thames is positioned approximately 1.4 km to the northwest and 1.3 km to the southeast at its closest positions, and generally flows in an easterly or south easterly direction a these locations.
The Environment Agency classifies the Superficial Kempton Park Gravel Member as Secondary A Aquifer and the London Clay Formation as an Unproductive Stratum
The site is not within a source protection zone, nor are there any groundwater abstractions within 1 km of the site.
Groundwater is considered to be present within the Kempton Park Gravel Member based on historical borehole records and likely to be perched above the low permeability London Clay Formation. Regionally groundwater is considered to flow in a north easterly direction towards and in hydraulic connectivity with the River Thames, the dominant surface water feature in the vicinity of the site.
During the ground investigations undertaken by Fairhurst, between the $21^{\text {st }}$ and 27 th of April 2021 with three post-fieldwork monitoring visits between the 5th and 26th of May 2021

Groundwater monitoring was conducted in five boreholes across the site. All boreholes were installed with 50 mm diameter combined ground gas and groundwater monitoring wells within the Made Ground, Kempton Park Gravel Member and London Clay Formation.
Refer to Appendix C for the ground investigations report.
Initial groundwater strikes reported during the ground investigations are summarised in Table below.

Borehole	Groundwater Level		Stratum
	m bgl	m AOD	
BH101	4.50 rising to 4.30	2.20 rising to 2.40	Kempton Park Gravel Member
BH102	4.50 rising to 3.90	1.90 rising to 2.50	
BH103	3.50 rising to 2.80	3.04 rising to 3.74	Kempton Park Gravel Member
BH104	3.20 rising to 2.60	3.05 rising to 3.65	Kempton Park Gravel Member
BH105	2.80 rising to 3.00	3.45 rising to 3.25	Kempton Park Gravel Member

Table 2 - Summary of Groundwater strikes recorded during investigation.

In order to understand the groundwater regime more comprehensively following the completion of site investigation work, groundwater monitoring rounds were undertaken on $5^{\text {th }}, 13^{\text {th }}$ and $26^{\text {th }}$ May 2021 as summarized below in Table 3

BOREHOLE	RESPONSE ZONE		GROUNDWATER LEVEL	
	\mathbf{m} bgl	STRATA	\mathbf{m} bgl	\mathbf{m} AOD
BH101	1.50 to 8.45	MG / KPGM / LC	2.46 to 2.56	4.24 to 4.14
BH102	1.00 to 7.00	$\mathrm{MG} / \mathrm{KPGM} / \mathrm{LC}$	2.32 to 2.41	4.08 to 3.99
BH103	2.00 to 8.00	KPGM / LC	3.88 to 4.26	2.66 to 2.28
BH104	1.00 to 5.00	MG / KPGM / LC	3.66 to 4.68	2.59 to 1.57
BH105	1.00 to 6.00	MG / KPGM / LC		3.45 to 4.03

Table 3 - Summary of Groundwater levels recorded during return visit monitoring.
The findings suggest that a shallow body of groundwater is situated within the Kempton Park Gravel Member. The Kempton Park Gravel Member was saturated at varying levels across the site with recorded groundwater levels between 4.24 m to 3.99 m AOD in the north of the site (BH101 and BH102) lowering to between 2.80 m to 1.57 m AOD in the central and southern area of the site (BH103, BH104 and BH105)
It should be noted that groundwater levels are subject to variation as a result of seasona changes and during following periods of adverse weather conditions.

As part of the ground investigations undertaken in August 2022 by Manhire Associates Geo Environmental Limited also found that the Kempton Park Gravel Member was saturated a varying levels across the site with recorded groundwater levels at between 3.57 m to 3.67 m AOD in the east of the site (BH1) lowering to between 2.17 m to 2.05 m AOD in the central and northern area of the site (BH 2 and BH 3).

The standpipe records were in broad agreement with that previously found by Fairhurst Details of the ground conditions are presented in Appendix C

5.7 Unexploded Ordnance

The site is within a high risk area with respect to unexploded ordinance. An UXO specialist watching brief is required for any below ground works

5.8 Flood Risk

A Flood Risk Assessment has been undertaken by Fairhurst which was submitted as part of the Planning Submission. (Revised Flood Risk Assessment and Drainage Strategy July 2020). As part of the suite of additional information submitted in October 2022, an updated Flood Risk Assessment has been prepared by Hydrock. This report includes the latest flood risk information identified in Richmond's latest SFRA (2021).

A detailed assessment of flood risk has identified that the site is located within Flood Zone (Low Risk) in respect of fluvial flood risk. Hydraulic modelling has been undertaken due to the identified risk of surface water flooding on the site through the current EA Mapping.
Results of the modelling confirm the site to be at risk of surface water flooding with the site being located in a key surface water flow route, entering in the southwestern and southern boundaries and discharging onto adjacent railway land in the northwest. Post development modelling has been carried out to ensure the flow route is safely managed through preferential lowering on site to minimise any offsite risk. Where risk is still identified on site, a number of flood resistant measures have been recommended to incorporate within the design and construction of the development with a key feature being flood proof doors where there is a potential for interna flooding
The site is indicated to be at low or negligible risk from all other assessed sources.
Due to the indicated surface water risk on site safe access and egress has been addressed through a Flood Warning and Evacuation Plan which highlights the flood risk to visitors and details the procedures to follow in the event of a Flood Warning from the EA being issued for the area and that the proposed development is also not considered to increase flood risk within the catchment through a loss of floodplain storage.
This report therefore demonstrates that, in respect of flood risk, the proposed development of the site:

- Is suitable in the location proposed
- Will be adequately flood resistant and resilient.
- Will not place additional persons at risk of flooding and will offer a safe means of access and egress.
- Will not increase flood risk elsewhere as a result of the proposed development through the loss of floodplain storage or impedance of flood flows.
- Will put in place measures to ensure surface water is appropriately managed.

As such, the application is concluded to meet the flood risk requirements of the NPPF
The FRA is presented in Appendix D

6.0 BASEMENT SCREENING ASSESSMENT

This Basement Impact Assessment has been undertaken in accordance with LBRuT's Basemen Assessment User Guide.
The first stage of the assessment is the Screening Assessment, which is used to identify any potential matters that may have an adverse impact and determine if a Basement Impact Assessment is required. If the answer to any of the screening questions below is "yes", or is currently unknown, matters relating to that question will need to be addressed as part of a Basement Impact Assessment

To determine if the proposed development requires a Screening Assessment the London Borough of Richmond upon Thames' SFRA map identified that the site falls within both of the two following designations

- an area with >= 25% susceptibility to groundwater flooding
- one of the four throughflow catchment areas

If the proposed development falls within one (or both) of these two designations and contains a basement, then the applicant needs to complete a Screening Assessment
The Basement Assessment User Guide notes that as part of answering the Screening Assessment questions, applicants are required to provide information to justify their answers.
Examples of information that is expected as part of the Screening Assessment should include, but are not limited to:

- Description of the proposed basement, cellar, or other subsurface structure development (Refer to Section 4 for further details)
- Construction methods proposed. (Refer to Section 4 for further details)
- Characteristics of the site, including geological information (bedrock, superficial deposits, and aquifer confirmation) and topographical information. (Refer to section 5 for further details)
- Site borehole information with water levels. (Refer to Section 5 for further details)
- Characteristics of potential impacts (including the impact on soils, water quality and hydrology) (Refer to Section 5 for further details)
- Details of mitigation measures (where appropriate).

The three tables below document the considerations that need to be examined in the design of basements. Areas requiring further consideration have been highlighted in yellow.

Does the recorded water table extend above the base of the proposed subsurface structure?	No, the water levels recorded in BH103 \& BH104 where the proposed basement is located varied between 1.57 m and 2.66 m AOD. The level of the underside of the proposed basement slab is 3.250 m AOD.
Is the proposed subsurface development structure within 100 m of a watercourse or spring line?	No, the nearest surface water feature to the site is a pond located approximately 310 m south of the site.
Are infiltration methods proposed as part of the site's drainage strategy?	No, the sites drainage strategy is to discharge the surface water to the public sewer on Manor Road.
Does the proposed excavation during the construction phase extend below the local water table level or spring line (if applicable)?	No, the water levels recorded in BH 103 \& BH 104 where the proposed basement is located varied between 1.57 m and 2.66 m AOD. The level of the underside of the proposed basement slab is 3.250 m AOD.
Is the most shallow geological strata at the site London Clay?	No, Kempton Park Gravel Member is the shallowest strata.
Is the site underlain by an aquifer and/or permeable geology?	Yes. The Environment Agency classifies the Superficial Kempton Park Gravel Member as Secondary A Aquifer

Table 4: Subterranean Characteristics

Does the site, or neighbouring area, topography include slopes that are greater than $7^{\circ} ?$	No, there are no slopes greater than 7deg on site or on neighbouring areas according to the topographical survey. (1:8 slope)
Will changes to the site's topography result in slopes that are greater than $7^{\circ} ?$	No, there will be no changes to the sites topography that will result in slopes greater than 7 deg. (1:8 slope)
Will the proposed subsurface structure extend significantly deeper underground compared to the foundations of the neighbouring properties?	No, the closest neighbouring property is 30 m away to the east.
Will the implementation of the proposed subsurface structure require any trees to be felled or uprooted?	No, there are no trees in the vicinity.
Has the ground at the site been previously worked?	No, the site has had no previous ground works.
Is the site within the vicinity of any tunnels or railway lines?	Yes, Railway lines form the north-western and southern boundaries. The closest railway line is approximately 30m to the west.

Table 5: Land Stability

Will the proposed subsurface development result in a change in impermeable area coverage on the site?	No, the existing site is 100\% impermeable. The proposed development will be peproximately 40\% impermeable with the formation of soft landscaped areas.
Will the proposed subsurface development impact the flow profile of throughflow, surface water or groundwater to downstream areas?	No, the proposed basement does not extend down below the highest ground water level recorded as part of the site investigations. The proposed basement wwill have no impact at all on the flow profile of throughtlow, surface water or groundwater to downstream areas.
Will the proposed subsurface development increase throughtlow or groundwater flood risk to neighbouring properties?	No the proposed basement does not extend down below the highest ground water level recorded as part of the site investigations. The proposed basement will not increase throughflow or groundwater flood risk to neighbouring properties.

Table 6: Flood Risk and Drainage
No, the existing site is 100% impermeable. The proposed development will be approximately 40% reas
No, the proposed basement does not extend down he site investigations. The proposed basement will , o, the proposed basement does not extend down the site investigations. The proposed basement will not oughflow or groundwater flood risk to neighbouring properties.
om to west.

Manor Road, Richmond Basement Impact Assessment

7.0 BASEMENT IMPACT ASSESSMENT

7.1 General

The screening assessment in section 6.0 identifies several items that require furthe consideration, as part of a Basement Impact Assessment:

- Effects of the Subterranean Characteristics- underlain aquifer and/or permeable geology
- Effects on land stability - tunnels or railway lines

The assessment undertaken is preliminary and is based upon the Revised Geoenvironmental \& Geotechnical Preliminary Risk Assessment (July 2020) prepared by Fairhurst \& Manhire Associates Geo-Environmental Limited Geo-Environmental Site Investigation Report referred to in section 5

7.2 Effects of the Subterranean Characteristics

7.2.1. Groundwater Recharge

There is a decrease in impermeable surfaces for the proposed development in comparison to the current development. This will allow the underlying aquifers to be recharged naturally.

7.2.2. Groundwater Flow

The proposed single level basement will extend through the Kempton Park Gravel Member bu will be above the shallow groundwater regime.

In theory, basement construction can lead to changes in groundwater levels and cause 'damming' where there is potential for levels to rise "upstream" of the development and reduce downstream.
A planning advice note - Good Practice Guide on Basement Developments" has been published by the London Borough of Richmond Upon Thames which states:
"Basements constructed just above or below the groundwater table could act as a barrier in the ground, thereby diverting groundwater flow around them. A basement constructed below the groundwater table may locally obstruct the natural flow, and depending on the geology and topography, this could result in a local rise in the groundwater level. However, for small isolated basements this impact is likely to be very localised because a basement has a small building volume in a large expanse of aquiver. Therefore, groundwater will still be able to flow around and potentially below the basement, and thereby it would not affect the overall groundwater table. In general, a small basement is unlikely to have a significant effect on the groundwater regime of a local area".

7.2.3. Dewatering

Based on the current redevelopment proposals and data on groundwater levels monitored in the preliminary ground investigation, it is considered that no dewatering will be necessary. The contractor will not be permitted to draw down the water table and will not be allowed to instal well points.
It is considered that the new small, isolated basement will not have any impact on the underlying aquifer and/or permeable geology as the basement is above the water table.

7.3 Effects on land stability - tunnels or railway lines

The North London Line runs approximately 30 m at is closest from the northwest corner of the basement and the Southwestern Line runs approximately 78 m at is closest from the south eastern corner of the basement
Network Rail and Transport for London have been contacted to confirm that works will not interfere with any of their infrastructure

It is considered that the proposed basement construction will not have any impact on the adjacent railway lines due to the overall distance from the infrastructure

Hazard	Cause	Consequences	Perceived Level of Risk without Control	Control Adopted	Perceived Level of Risk with Control	Risk Owner-ship
Impact on shallow groundwater regime	Basement construction	Effect on groundwater quality, level or flow	Low	None proposed due to low level of risk	Low	N/A
Damage to adjacent Infrastructure	Excavation induced ground movement	Remedial works required. Programme effects Cost	Low	None proposed due to low level of risk	Low	Contractor/Engineer
Buried obstructions	Previously Worked Ground	Programme effects Cost	Moderate	Contingency measures will be put in place should they impact on the design and construction of the foundations and basement excavation	Low	Contractor/Engineer

8.0 CONCLUSIONS

It has been demonstrated that there have been sufficient investigations carried out to understand the ground regime to facilitate the design of the substructure.
Whilst basement construction can lead to changes in groundwater level, the basement is smal and isolated and does not extend into the groundwater so will not have any impact on the underlying aquifer and/or permeable geology.
The proposed basement construction will not have any impact on the adjacent railway lines due to the overall distance from the infrastructure.
The Report describes the new proposals and appraises the impact of the development on neighbouring buildings, structures and infrastructure in the vicinity as well as drainage, stability and the groundwater regime which complies with Policy LP11 from the Local Plan relating to basement development.
The risks are summarised in a Risk Register with details of how risks are minimised with controls.

A site assessment verification form has been completed and provided below as required by the Basement Assessment User Guide.
8.1 Site and Assessment Verification Form

Site Details

Site Details	Applicant Information
Site name	Homebase, 84 Manor Road, North Sheen, Richmond
Planning application reference (If applicable)	$19 / 0510 /$ FUL
Address \& postcode	Former Homebase, 84 Manor Road, North Sheen, Richmond, TW9 1YB
Brief description of the proposed works	The proposed development comprises the demolition of the current retail units and the development of 4 No. residential buildings, permeable paving, and soft landscaping. Building A is a part 3, part 4, part 7 and 8 storey building, Building B is an 11 storey building, Building C is a part 8 and 10 storey building and Building D is a part 4, part 7 and part 8 storey building. In addition, a basement plant room is proposed beneath Building A
Geology type	The ground conditions revealed by the investigations were representative of the wider area and were consistent with the BGS records with Made Ground overlying Kempton Park Gravels over London Clay.
Presence of aquifer?	The Environment Agency classifies the Superficial Kempton Park Gravel Member as Secondary A Aquifer and the London Clay Formation as an Unproductive Stratum.
Total site area (Ha)	(1.65 ha
Is the site currently known to be at risk of flooding from any sources?	Results of the modelling within the FRA confirm the site to be at risk of surface water flooding.

Chartered Professional Verification

Professional Details	Applicant Information
Name	Anna Beard
Profession / area of expertise	Civil and Structural Engineer - reinforced concrete basements and concrete and steel frame buildings
Chartered institution and membership level	Institute of Civil Engineers - MICE CEng
Brief description of assessment involvement	Review and Approval of report.
Brief summary of the assessment results	Refer to section 8
Declaration of assessment results	
Signature	Pिnna Ēen

APPENDIX A
SITE PLAN \& TOPOGRAPHICAL SURVEY

Sources:
Levels are related to Ordnance Survey
Datum via GPS Observations
Survey location is related to Ordnance
Al infortion GPS Observations.
(including digital data) should be checked and verified prior to any fabrication or construction.
STN01-518899.719, 175472.891, 6.147 STNO2-518970.579, 175484.687, 6.58

Key:			 S/O Smake Outlet ${ }_{\text {TCB }}^{\text {TTP }}$ Tolephane $\underset{W}{\text { TT }}$ Taccrs Paving ${ }^{\text {Ther }}$ WM Water Meter			
					S1	S2
			A		S3	S4
				S5	S6	S7
				S8	S9	S10

Project: Homebase,
Drawn By: SB

		Title: Topographic Survey Sheet 5

Sources:
Levels are related to Ordnance Survey
Datum via GPS Observations
Survey location is
Survey location is related to Ordnance
Survey Grid via GPS Observations.
All information cons observaions. (including digital data) should be checked and verified prior to any fabrication or construction.
STN01-518899.719, 175472.891, 6.147 STNO2-518970.579, 175484.687, 6.586
STNO3-518969.606, 175528.346, 6.72

Key:		
	$\begin{aligned} & \text { CPS } \\ & \text { DR } \\ & \text { D } \\ & \text { RH } \end{aligned}$	Droped
		Eaves

Project: Homebase, Richmond \quad Title: Topographic Survey

Drawn By: SB
Scale: 1:100 @ A0

APPENDIX B
ARCHITECTURAL DRAWINGS

