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Background

* Why is this important?
* Why is this difficult?
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Why is this important?

» Long term policy and planning decision based on projections
Do we need to build Crossrail 47

« Want to test implications of possible scenarios
Fall in EU migration, different levels of housing delivery

» Shorter term planning also relies on projections

How much public transport fare revenue will we have over
the next five years?
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| Why is this difficult?

« Annual migration flows in/out of London ~900k

» Total net flow to London ~0 * "(+/- 2 few 105 thousands)
* Flows highly asymmetric
International in > Domestic out Young adults in > Everyone else out

* Flows estimated with different methodologies
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| Why is this difficult?

« Small proportional change in any flow has big impact on net
» Migration is inherently uncertain and hard to measure
« Data sources vary in completeness, accuracy, biases
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I Why is this difficult?
* Trend based models offer limited capacity to test scenarios
outside of past history

* Models don't typically include direct relationships and
Interactions between components

« Good at reflecting structural change
« Usually less good reflecting behavioural responses
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Reviewing past projections

* How have previous projections stood the test of time?
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Reviewing past projections

* How have previous projections stood the test of time?

* On the face of it, not great...
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Reviewing past projections

* Projections from the 2000s
dramatically undershot
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Reviewing past projections

* Projections from the 2000s
dramatically undershot

 Projections from 2010s took a _*
much higher trajectory
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Reviewing past projections

* Projections from the 2000s
dramatically undershot

 Projections from 2010s took a _»
much higher trajectory

* Why the sudden change?
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Reviewing past projections

* Have to view projections in
the context they were
produced

« Estimates revised multiple
times over the years

* Projections generally look
plausible given the inputs
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Sources of uncertainty

 Variation in components
* Error in input data

« Assumptions

 Model incompleteness

« Complexity
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Variation in components

 Year-on-year fluctuations in underlying behaviours
« Random noise in measurement
 Cyclical changes — e.g. with economic cycles

* Probably the most tractable form of uncertainty

« Can usually be adequately quantified by:
1. Considered use of variants
2. Probabilistic methods
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Error in input data

* |.e. estimated population and migration
» Migration estimates prone to systematic error

» Accuracy of population estimates is cyclical with census
» Population rolled forward from most recent census
« Systematic errors compound over time

* We're approaching peak uncertainty...

CITY INTELLIGENCE



Assumptions

 Projections incorporate a lot of assumptions about the future:
* Whether they are explicit or implicit in data

* The uncertainty of assumptions often not readily quantifiable
e.g.

Future migration policy and the relative attractiveness of the
country

Future housing policy, delivery of new homes, affordability
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Model incompleteness

« Our models are informed simplifications of reality
« Capture what we think is most important
» But always incomplete
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Model incompleteness

Example:

» Domestic migration and fertility reflect recent patterns and
structure changes in age structure

« But do not capture direct impacts of international migration
* Domestic flows from displacement by/onward moves of migrants™
« Tempo fertility effects **

* Gordon et al: Migration Influences and Implications for Population Dynamics in the Wider South East
** Robards and Berrington: The fertility of recent migrants to England and Wales
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| Model incompleteness
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Model incompleteness

Greece, Portugal,

Spain, Italy...
* Domestic outflows mirror net g 1% ——NetDomestic
. . . o Net International
international inflows g Toulne
« Some additional complexity to
consider too 50
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Complexity

 Reality is complex and full of interactions and feedbacks
between individuals, institutions and the wider environment

» Unexpected patterns can emerge as a result

« Simple aggregate-level cohort component models don’t reflect
such dynamics

No trend model based on recent data gives alternative to
continued population growth — chance of reversal is zero?

What kind of model that would have predicted young people
would willingly move to Peckham?
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Coping strategies
 Understand limitations

* Diversifying models and data
« Communication

CITY INTELLIGENCE



Understand limitations

“l do not fancy | know what | do not know.”

 Important to think critically about the elements of the projection
and their limitations:
 Input data, methodology, assumptions

« Data sources are too often treated naively by users

» Understand the provenance of input data
* How it is collected/processed
» Quality / coverage / bias
« Consistency over time
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Diversifying models and data

The ‘standard’ approach is to attempt to identify and overcome
weaknesses — I.e. do the same but better

* Increase fidelity of the model
 Improve data sources or work around their limitations
* Refine assumptions or produce variants

Important, but don’t solve underlying problems

* Projections vulnerable to a single weakness
» Difficult to provide a meaningful indication of uncertainty
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Diversifying models and data

Strength in numbers

An alternative strategy is to diversify the methods and data we
use

« Base inputs on multiple data sources to improve robustness
* Test a wide range of assumptions and scenarios

« Use multiple independent models and interpret their results in
combination
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Diversifying data

* |dentify additional information that can be used to monitor,
validate, improve, or quantify uncertainty in the principal data
sources

* Alternative sources invariably have more limitations than, e.g.
official estimates

« But we can still improve the robustness of our inputs by
borrowing from their various strengths
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Diversifying inputs

Example: adjusting migration estimates for children

« Minor change in estimates methodology after 2011 has big
effect on subsequent estimates of children in central London

* Issue spotted through monitoring estimates against:
* Births by cohort, school census data, GP registration data

» Used timeseries of administrative data to estimate regional
patterns of cohort change

» Account for domestic migration and deaths
« Remainder assumed result of net international migration
» Use as basis for revised international migration flows
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Diversifying models

Strength in numbers

* The Diversity Prediction Theorem™ suggests we can reduce the
error of predictions by combining results of multiple models

 More models = better predictions!

*For N independent models:

v (M;=V)? N (M;—M)?
M—-—V)2=YyN2Z 22 Wy
( ) Z l N Z l N
V = true value, M; = it model’s prediction, M = average of predictions
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Diversifying models

* In practice, usually limited by the number of good, independent,
models we can create

* |It's ok for the models to have limitations — we’d just like them to
have different limitations

* The GLA currently makes use of two alternative approaches
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Diversifying models — housing-led projections
» Adapt cohort component model to give results consistent with

scenarios of future housing development

« Capacity of housing stock used as mechanism to govern
migration/population

* Range of plausible outcomes for both:
* Number of new homes that will be built in future
 Future density of occupation

CITY INTELLIGENCE



Housing-led projections

« Range of possible house
building scenarios 6

» Consideration of past trends
and policy goals
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Housing-led projections

Person per dwelling scenarios

 Application of age-specific
household formation rates
« ONS 2016-based
« DCLG 2014-based

e Constant at current number
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Housing-led projection

« Obtain projected population z
for each combination of
housing trajectory and
occupation assumption
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Housing-led projections

« Obtain projected population 1
for each combination of
housing trajectory and
occupation assumption

12

10

Population (millions

2010

2020

2040

scenario

= constant 2.5
= : dclg_based

= 0ns_based

2050

CITY INTELLIGENCE



Diversifying models — employment-led projections
« Similar to housing-led approach, but availability of employment

used as driver of population change

 Consistent projections of future GVA and jobs growth produced
by colleagues in GLA Economics

* GVA growth scenarios

e Central; 2.5% =2 2.0%
 High: 3.0% =2 2.5%
e Low: 2.5% =2 1.5%

https://www.london.gov.uk/business-and-economy-publications/london-labour-market-projections-2017
GLA Experimental Employment-led Projections (https://data.london.gov.uk/dataset/projections-documentation)
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Employment-led projections

Model iteratively adjusts population for each year until
unemployment consistent with target rate

u, = (e.py) — ly —oy

u = unemployment rate

y = year

e = economic activity rate

p = population

| = London residents who work in London

o0 = London residents who work outside London
S = scenario
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Employment-led projections

Projected workforce jobs Assumed unemployment rate
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Employment-led projections

Projected net migration Projected total population
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Employment-led projections

Projected population by age vs 2016
» Output of model can be used RN Ry EsEY

as input to household model

 Create consistent projections
of GVA, jobs, population,
housing need...
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Diversifying models

Additional approaches being investigated
« Systems Dynamics

» Spatial interaction
* Agent based
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Diversifying models - Systems Dynamics

« SD models represent systems
iIn terms of stocks, flows and
links between them

» Good at capturing
Interrelationships and
feedbacks between wide
range of elements

 Challenging to incorporate
high levels of spatial or
categorical detalil
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Diversifying models — Systems Dynamics

* The London Simulator
developed with external
partners W
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Diversifying models — Agent Based Models

« Represent people/dwellings/institutions as distinct individuals
* Model interactions between individuals and with environment

» Applications in social science as explanatory or exploratory
models

« Use as predictive models has been more limited
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Diversifying models — Agent Based Models

Predictive ABMs:

* Have high input data requirements
* Are computationally intensive

« Can be challenging to validate

But - have the potential to reflect complex dynamic behaviour far
better than standard approaches
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Diversifying models — Agent Based Models

Potential to use ABMs has increased rapidly:

* Input data improving through new sources and use of
microsimulation

 Cloud platforms helping to remove computational barriers

* Frameworks and protocols to design and structure ABMs have
emerged (ODD+D and POM)
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Effective communication

Understanding the audience(s)
« Uncertainty not an easy concept for many users of projections

« Aim to present the information in a way that will encourage
them to make use of it

* Need to understand how users interpret information about
uncertainty
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Effective communication

« How much does it help, in practice, to present users with
statistical measures?

“The projected 2040 population of 10.5 — 11.2 million is within
one standard deviation of the mean output”
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Effective communication

« How much does it help, in practice, to present users with
statistical measures?

* |s something like this more useful?

“The projected 2040 population of 11 million is consistent with:
a continuation of the last decade’s migration trends;
annual housing delivery of 35 to 50 thousand units;
annual GVA growth of 2.2 to 2.7%"
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Effective communication

* Develop set of coherent scenarios that users can relate to
« Realistic
« Challenging
* Internally consistent

* Produce suite of projections that embody these
« Demographic, economic, transport

» Use to stress-test plans and policies
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Contact:

demography@Ilondon.gov.uk
ben.corr@london.qov.uk

CITY INTELLIGENCE



