Arboricultural Report

CAVAT Assessment for 2021/1213 \& 2022/0193

Aberfeldy Estate
London
E14 0NU

December 2022

220254-PD-91

Project Reference	220254-PD-91 - Aberfeldy Village (including Jolly's Green)	
Report Type	Arboriculture (Planning)	
Author	Chris Wright	
Checked by	Tim Moya	
Date Checked	21 Dec 2022	
Original Issue Date	21 Dec 2022	
Most Recent Version		

The contents of this report are copyright of Tim Moya Associates and may not be altered or amended without the author's permission. Tim Moya Associates Standard Limitations of Service apply to this report, and all associated work relating to this site.
1 INTRODUCTION 4
INSTRUCTION 4
DEFINITIONS 4
SCOPE. 4
AUTHOR 5
2 CAVAT CALCULATIONS 6
EXISTING TREE VALUE 6
PROPOSED TREE VALUE 6
3 CONCLUSION 10
4 APPENDICES CONTENTS 11

1 INTRODUCTION

Instruction

1.1 This Arboricultural Report ('the Report') has been instructed by EcoWorld London ('the Client').

Definitions

1.2 The following particular terms and abbreviations may be used within this Report. These terms are defined by BS5837 ${ }^{1}$ as follows, unless provided without quotation marks:

- Capital Asset Value for Amenity Trees ('CAVAT') - CAVAT provides a basis for managing trees in the UK as public assets rather than liabilities. It is designed not only to be a strategic tool and aid to decision-making in relation to the tree stock as a whole, but also to be applicable to individual cases, where the value of a single tree needs to be expressed in monetary terms.
- Local Planning Authority ('LPA') - the planning department of the borough, district, or metropolitan council.

Scope

1.3 This Report has been prepared to respond to the comments raised (hereafter referred to as 'the Response') by the Greater London Authority ('the GLA') for cases 2021/1213 and 2022/0193 (hereafter both are assumed as one and referred to as 'the Case'). This Report outlines the CAVAT values of the trees specified for removal and the CAVAT value of those specified to be planted, and provides a comparison between the two figures with an associated discussion.
1.4 Specifically, this Report has been prepared in response to the Response, which states as follows: "The previous comments also requested that the applicant should review the trees lost and proposed further to reduce the impact of the loss as the Tree Survey and Arboricultural Assessment Addendum stated that new tree planting is considered to mitigate this loss, after approximately 20-25 years", which is considered to be a long period and does not appear to be an adequate replacement as stated in Policy G7. The applicant has provided an Arboricultural Addendum report which states that alterations to design are considered to be positive in overall arboricultural terms. However, the applicant does not appear to have recalculated the CAVAT values to determine the value of the trees to be lost using the appropriate valuation system and set out how this has been accounted for through replacement tree planting within a reasonable timescale, such as 15-20 years to allow proposed trees to establish and mature. This should be provided as soon as possible."
1.5 For clarity, the reference number for the same Case as is being administrated by the LPA is PA/21/02377/A1 ('the Proposed Development'). Therefore, this Report must be read in conjunction with the details submitted for the Proposed Development. In particular, this Report must be read in conjunction with the following documents:

- Arboricultural Impact Assessment (T5574 V3.0-provided by ArbEco for the main estate area);
- Arboricultural Impact Assessment (220254-PD-11a - provided by TMA for the Jolly's Green area);
- Design and Access Statement: The Masterplan Revision A (3663-LB-ZZ-XX-RP-A-500100 - specifically, Section 7 from page 312); and
- Design and Access Statement: The Masterplan Revision A Addendum (no document reference).

Author

1.6 This Report was written by Christopher Wright ('the Author'). Christopher is an arboricultural consultant dealing with trees in relation to all forms of human activity including built development. He is a Technician Member of the Arboricultural Association, a member of the Royal Forestry Society, a member of the Institute of Chartered Foresters, holds the Level 6 Diploma in Arboriculture ($A B C$), the Professional Tree Inspection certificate (LANTRA), and has received a BSc (Hons) Conservation and Environment (2:1) from Writtle University College.

2 CAVAT CALCULATIONS

Existing tree value

Precursory scope information

2.1 This Report combines CAVAT values for trees specified for removal within both arboricultural reports that have been submitted as part of this Proposed Development (of which both are listed at paragraph 1.5).
2.2 The CAVAT values for the trees specified for removal as part of the ArbEco report have been estimated with what is considered to be a reasonable degree of accuracy. Some standardised numerical allocations for particular aspects of the CAVAT calculation process have been assigned to trees, such as for the extent to which trees have been pruned or otherwise managed. It is considered that the individual and combined CAVAT values for these trees are fair and reasonably reflective of the situation.
2.3 By comparison, the CAVAT values for the trees specified for removal in the Jolly's Green area (wherein these trees were surveyed by the Author as part of the TMA report) are more precise.

Calculated CAVAT value

2.4 The value attributed to the existing trees that are specified for removal within the ArbEco area is $£ 3,046,392$. This value is provided in tabular format at Appendix A.
2.5 The value attributed to the existing trees that are specified for removal within the TMA area is $£ 585,801$. This value is provided in tabular format at Appendix B.
2.6 The combined value of all tree that are specified for removal is $£ 3,632,193$.

Proposed tree value

Precursory scope information

2.7 The Proposed Development specifies the planting of 406 no. trees, within the public realm (i.e., at ground level). The Proposed Development also specifies the planting of 47no. trees on podiums (or terraces), though these trees are not strictly considered in the context of CAVAT (wherein it affects 'public' trees). Consequently, this Report focusses exclusively on the 406no. trees that are specified for planting within the street scene - the remainder are considered as private assets.
2.8 Given that the Proposed Development largely comprises an Outline planning application, details pertaining to tree species and sizes are currently indicative. The details pertaining to trees that are to be planted are provided within the Design and Access Statement: The Masterplan Revision A (as is referenced at paragraph 1.5). For the sake of efficiency, it is assumed as follows:

- that there is a $50 / 50$ split of larger and smaller trees;
- larger trees comprise species that can attain large mature forms;
- smaller trees may include multi-stemmed trees;
- larger trees will be planted with a stem diameter of 6 cm ; and
- smaller trees will be planted with a stem diameter of 4 cm .
2.9 The extent to which this Report projects future tree value extends to 15 no. and 20 no. years into the future, which comprises both the lower and upper end of the range requested by the GLA. Therefore, for planted trees within the public realm, this Report provides 3no. values:
- Year 0 value (i.e., value at the time of transplanting);
- Year 15 value (i.e., estimated value after 15 years of successful growing); and
- Year 20 value (i.e., estimated value after 20 years of successful growing).

Assumed growth rate

2.10 CAVAT calculations are based on a number of factors, though the starting point is stem size. Anticipating the growth rate of the stem sizes of trees is difficult and prone to significant fluctuation - particularly, in urban areas (as is the case in this instance). Consequently, there is generally understood to be a wide range as regards the rate a tree stem may grow. In some cases, trees may grow at a rate of 1 cm (or greater) increase in diameter each year, though in other cases it may be as little as 0.25 cm increase in diameter each year.
2.11 To further complicate matters, this rate is affected by influencing factors that may temporarily or permanently limit it. Some notable factors in this instance include:

- tree species (trees inherently grow at different rates);
- transplanting stress (trees are usually subject to 'shock' after transplanting, often for up to 3no. years - larger trees are usually subject to a greater degree of 'shock');
- soil space and aftercare (trees require theoretically unlimited soil to grow within and need to be cared for once planted via irrigation, for ideally up to 5no. years); and
- morality (some trees die after transplanting, which is normal but is significantly reduced by appropriate aftercare - in particular, effective irrigation).
2.12

In the context of this Report, noting that the area is urbanised and that the trees to be planted are not yet confirmed in size nor species, a series of estimations of a stem diameter increase of $0.5 \mathrm{~cm}, 0.75 \mathrm{~cm}$, and 1.0 cm per tree per year is assumed - this applies only for the larger trees, with the rate for smaller trees being a non-variable rate of 0.5 cm .
2.13 This approach to calculation is considered to buffer against the current unknowns and the effects that any mortality rate and transplanting stress may have on an assumed greater growth rate (i.e., it's considered to be a 'sense-check'), though it does operate on the basis of the following assumptions (note: the LPA can require adherence to the following by way of attaching a suitable planning condition to the Decision Notice):

- that all trees are actively and effectively irrigated for up to 5 years (to reduce the risk of stress and mortality); and
- that trees that die (should any die) are replaced like-for-like with a tree of the same species and size (and thereafter actively managed for 5 years after the date of planting).

Assumed life expectancy

2.14 The life expectancy of the larger trees is considered to be between 40-80 years in all calculations, whereas for the smaller trees it is assumed to change from 20-40 years at Year 0 to 10-20 years at Year 20. This is only an assumption of this Report, though the calculations have been undertaken with this in mind for the sake of efficiency and prudence.

Calculated CAVAT value

2.15 The value attributed to the 406no. trees that are specified for planting within the public realm are provided below (these values are provided at Appendix C):

- Year 0: £380,016;
- Year 15 (0.5 / 0.75 / 1.0 growth rates): $£ 1,538,537$ / $£ 2,805,460 / £ 3,951,598.00$; and
- Year 20 (0.5 / 0.75 / 1.0 growth rates): £2,627,835 / £4,022,851 / £5,795,041.
2.16 At the point that the Proposed Development is fully implemented (including tree removals and tree planting - i.e., Year 0), there is a negative difference in CAVAT terms of $£ 3,252,177$. Hereafter, negative values are shown in red (with a '-' symbol before the GBP sign) and positive values in green.
2.17 After a period of 15 years, it is considered that this value will alter to (based on the 3no. different growth rates): -£2,093,656 / -£826,733 / £319,405.
2.18 After a period of 20 years, this value will further alter to (again based on the 3no. different growth rates): -£1,004,358 / £390,658 / £2,162,848.
2.19 For the sake of clarity, noting that CAVAT values for trees at Year 15 and Year 20 are presented as a range, it is likely that the change in CAVAT value by Year 20 will comprise a modest gain. It is considered to be most likely that the growth rate of the larger trees will be in the region of 0.75 cm diameter increase per year, which would result in a net gain of $£ 390,658$. However, should the larger trees grow more quickly then there may be a net gain in CAVAT terms by Year 15. It is considered unlikely that the larger trees will grow at such a slow rate that there is no net gain by Year 20.
2.20 It must also again be noted that the actual sizes of trees to be planted, as well as the species of these trees, are not details that have been confirmed. As the size of trees being planted is considered to be on the conservative end, it may be the case that there is a break-even in CAVAT terms after a shorter period of time, should trees of larger sizes be planted at Year 0.

3 CONCLUSION

3.1 Based on the calculations presented within this Report, the Proposed Development is considered likely to be able to provide a net gain in CAVAT terms between Year 15 and Year 20.
3.2 In terms of the comments provided by the GLA in their Response to the Case, this Report considers that there are no relevant outstanding matters as regards trees.

4 APPENDICES CONTENTS

APPENDIX A - ArbEco values

- CAVAT (ArbEco)

APPENDIX B - TMA values

- CAVAT (TMA)

APPENDIX C - New tree values

- CAVAT calculations

APPENDIX A - ArbEco values

- CAVAT (ArbEco)

CTI Factor (Please select)

FNNAL VALU

APPENDIX B - TMA values

- cavat (tMa)

APPENDIX C - New tree values

- CAVAT calculations

CAVAT

SPREADSHEET TO CALCULATE VALUE OF INDIVIDUAL TREE STOCK (FULL METHOD)

	© Christopher NeilanCreated by Alexandra Sleet and Phillip Handley	
Only enter data in the pale-green boxes		
CAVAT	Quantities you measure / look up	Calculated Values
Step 1: Basic Value Measured Trunk Diameter Unit Value Factor Basic Value	6.00 18.44	£521.38
Step 2: CTI Value Community Tree Index (CTI) Factor Community Tree Index (CTI) Value	250	$£ 1,303.45$
$\quad$$\quad$ Step 3: Location Value Location Factor Location Value	100	$\begin{array}{\|c\|} \hline \\ \hline \end{array}$
Step 4: Functional Crown Value part 1 Structural Factor Structural Value	100	$£ 1,303.45$
Step 5: Functional Crown Value part 2 Functional Crown Factor Functional Crown Value	100	$£ 1,303.45$
Step 6: Amenity Value Positive Attributes Factor Negative Attributes Factor Amenity Value	10 0	$£ 1,433.79$
Step 7: Full Value Life Expectancy Factor	$40-<80$	
FINAL VALUE		$£ 1,362$

CAVAT

SPREADSHEET TO CALCULATE VALUE OF INDIVIDUAL TREE STOCK (FULL METHOD)

	© Christopher NeilanCreated by Alexandra Sleet and Phillip Handley	
Only enter data in the pale-green boxes		
CAVAT	Quantities you measure / look up	Calculated Values
Step 1: Basic Value Measured Trunk Diameter Unit Value Factor Basic Value	4.00 18.44	$\begin{array}{\|c\|} \hline £ 231.72 \\ \hline \end{array}$
Step 2: CTI Value Community Tree Index (CTI) Factor Community Tree Index (CTI) Value	250	$£ 579.31$
$\quad$$\quad$ Step 3: Location Value Location Factor Location Value	100	$£ 579.31$
Step 4: Functional Crown Value part 1 Structural Factor Structural Value	100	$£ 579.31$
Step 5: Functional Crown Value part 2 Functional Crown Factor Functional Crown Value	100	$£ 579.31$
Step 6: Amenity Value Positive Attributes Factor Negative Attributes Factor Amenity Value	10 0	£637.24
Step 7: Full Value Life Expectancy Factor	20-<40	
FINAL VALUE		$\begin{array}{\|c} \hline \\ \hline \end{array}$

CAVAT

SPREADSHEET TO CALCULATE VALUE OF INDIVIDUAL TREE STOCK (FULL METHOD)

	© Christopher NeilanCreated by Alexandra Sleet and Phillip Handley	
Only enter data in the pale-green boxes		
CAVAT	Quantities you measure / look up	Calculated Values
Step 1: Basic Value Measured Trunk Diameter Unit Value Factor Basic Value	11.00 18.44	$£ 1,752.41$
Step 2: CTI Value Community Tree Index (CTI) Factor Community Tree Index (CTI) Value	250	$£ 4,381.03$
\quad Step 3: Location Value Location Factor Location Value	100	$£ 4,381.03$
Step 4: Functional Crown Value part 1 Structural Factor Structural Value	90	$£ 3,942.93$
Step 5: Functional Crown Value part 2 Functional Crown Factor Functional Crown Value	100	$£ 3,942.93$
Step 6: Amenity Value Positive Attributes Factor Negative Attributes Factor Amenity Value	20 0	$£ 4,731.51$
Step 7: Full Value Life Expectancy Factor	$40-<80$	
FINAL VALUE		$£ 4,495$

CAVAT

SPREADSHEET TO CALCULATE VALUE OF INDIVIDUAL TREE STOCK (FULL METHOD)

	Created by Alexandra Sleet and Phillip Handley	
Only enter data in the pale-green boxes		
CAVAT	Quantities you measure / look up	Calculated Values
Step 1: Basic Value Measured Trunk Diameter Unit Value Factor Basic Value	17.00 18.44	$\begin{array}{\|c\|} \hline £ 4,185.51 \\ \hline \end{array}$
Step 2: CTI Value Community Tree Index (CTI) Factor Community Tree Index (CTI) Value	250	£10,463.78
$\quad$$\quad$ Step 3: Location Value Location Factor Location Value	100	£10,463.78
Step 4: Functional Crown Value part 1 Structural Factor Structural Value		£9,417.40
Step 5: Functional Crown Value part 2 Functional Crown Factor Functional Crown Value	100	$£ 9,417.40$
Step 6: Amenity Value Positive Attributes Factor Negative Attributes Factor Amenity Value	20 0$120$$\square$	£11,300.88
Step 7: Full Value Life Expectancy Factor	40-<80	
FINAL VALUE		£10,736

CAVAT

SPREADSHEET TO CALCULATE VALUE OF INDIVIDUAL TREE STOCK (FULL METHOD)

	Created by Alexandra Sleet and Phillip Handley	
Only enter data in the pale-green boxes		
CAVAT	Quantities you measure / look up	Calculated Values
Step 1: Basic Value Measured Trunk Diameter Unit Value Factor Basic Value	21.00 18.44	£6,386.89
Step 2: CTI Value Community Tree Index (CTI) Factor Community Tree Index (CTI) Value	250	£15,967.22
\quad Step 3: Location Value Location Factor Location Value	100	£15,967.22
Step 4: Functional Crown Value part 1 Structural Factor Structural Value	90	$£ 14,370.50$
Step 5: Functional Crown Value part 2 Functional Crown Factor Functional Crown Value	100	$£ 14,370.50$
Step 6: Amenity Value Positive Attributes Factor Negative Attributes Factor Amenity Value	20 0	¢ £17,244.60
Step 7: Full Value Life Expectancy Factor	$40-<80$	
FINAL VALUE		£16,382

CAVAT

SPREADSHEET TO CALCULATE VALUE OF INDIVIDUAL TREE STOCK (FULL METHOD)

	© Christopher NeilanCreated by Alexandra Sleet and Phillip Handley	
Only enter data in the pale-green boxes		
CAVAT	Quantities you measure / look up	Calculated Values
Step 1: Basic Value Measured Trunk Diameter Unit Value Factor Basic Value	11.00 18.44	$£ 1,752.41$
Step 2: CTI Value Community Tree Index (CTI) Factor Community Tree Index (CTI) Value	250	£4,381.03
$\quad$$\quad$ Step 3: Location Value Location Factor Location Value	100	$\begin{array}{\|l\|l\|} \hline \\ \hline \end{array}$
Step 4: Functional Crown Value part 1 Structural Factor Structural Value	80	£3,504.82
Step 5: Functional Crown Value part 2 Functional Crown Factor Functional Crown Value	100	£3,504.82
Step 6: Amenity Value Positive Attributes Factor Negative Attributes Factor Amenity Value	10 0	£3,855.31
Step 7: Full Value Life Expectancy Factor	20-<40	
FINAL VALUE		$£ 3,084$

CAVAT

SPREADSHEET TO CALCULATE VALUE OF INDIVIDUAL TREE STOCK (FULL METHOD)

	© Christopher NeilanCreated by Alexandra Sleet and Phillip Handley	
Only enter data in the pale-green boxes		
CAVAT	Quantities you measure / look up	Calculated Values
Step 1: Basic Value Measured Trunk Diameter Unit Value Factor Basic Value	16.00 18.44	$\begin{array}{\|l\|l\|} \hline & 3,707.58 \\ \hline \end{array}$
Step 2: CTI Value Community Tree Index (CTI) Factor Community Tree Index (CTI) Value	250	$£ 9,268.95$
\quad Step 3: Location Value Location Factor Location Value	100	$£ 9,268.95$
Step 4: Functional Crown Value part 1 Structural Factor Structural Value	90	$£ 8,342.06$
Step 5: Functional Crown Value part 2 Functional Crown Factor Functional Crown Value	100	$£ 8,342.06$
Step 6: Amenity Value Positive Attributes Factor Negative Attributes Factor Amenity Value	20 0	£10,010.47
Step 7: Full Value Life Expectancy Factor	$40-<80$	
FINAL VALUE		$£ 9,510$

CAVAT

SPREADSHEET TO CALCULATE VALUE OF INDIVIDUAL TREE STOCK (FULL METHOD)

CAVAT

SPREADSHEET TO CALCULATE VALUE OF INDIVIDUAL TREE STOCK (FULL METHOD)

	Created by Alexandra Sleet and Phillip Handley	
Only enter data in the pale-green boxes		
CAVAT	Quantities you measure / look up	Calculated Values
Step 1: Basic Value Measured Trunk Diameter Unit Value Factor Basic Value	26.00 18.44	£9,790.33
Step 2: CTI Value Community Tree Index (CTI) Factor Community Tree Index (CTI) Value	250	£24,475.83
\quad Step 3: Location Value Location Factor Location Value	100	£24,475.83
Step 4: Functional Crown Value part 1 Structural Factor Structural Value	90	£22,028.25
Step 5: Functional Crown Value part 2 Functional Crown Factor Functional Crown Value	100	$£ 22,028.25$
Step 6: Amenity Value Positive Attributes Factor Negative Attributes Factor Amenity Value	20 0	¢ £26,433.90
Step 7: Full Value Life Expectancy Factor	$40-<80$	
FINAL VALUE		£25,112

CAVAT

SPREADSHEET TO CALCULATE VALUE OF INDIVIDUAL TREE STOCK (FULL METHOD)

	Created by Alexandra Sleet and Phillip Handley	
Only enter data in the pale-green boxes		
CAVAT	Quantities you measure / look up	Calculated Values
Step 1: Basic Value Measured Trunk Diameter Unit Value Factor Basic Value	14.00 18.44	$\begin{array}{\|c\|} \hline £ 2,838.62 \\ \hline \end{array}$
Step 2: CTI Value Community Tree Index (CTI) Factor Community Tree Index (CTI) Value	250	£7,096.54
\quad Step 3: Location Value Location Factor Location Value	100	$£ 7,096.54$
Step 4: Functional Crown Value part 1 Structural Factor Structural Value	80	$£ 5,677.23$
Step 5: Functional Crown Value part 2 Functional Crown Factor Functional Crown Value	100	$£ 5,677.23$
Step 6: Amenity Value Positive Attributes Factor Negative Attributes Factor Amenity Value	10 0$110$	$£ 6,244.96$
Step 7: Full Value Life Expectancy Factor	$10-<20$	
FINAL VALUE		$£ 3,435$

LARGE TREES				
YEAR	GROWTH	INDIV.	COUNT	TOTAL
Year 0	N/A	$£ 1,362.00$	203	$£ 276,486.00$
	0.5	$£ 4,495.00$	203	$£ 912,485.00$
Year 15	0.75	$£ 10,736.00$	203	$£ 2,179,408.00$
	1	$£ 16,382.00$	203	$£ 3,325,546.00$
Year 20	0.5	$£ 9,510.00$	203	$£ 1,930,530.00$
	0.75	$£ 16,382.00$	203	$£ 3,325,546.00$
	1	$£ 25,112.00$	203	$£ 5,097,736.00$

SMALL TREES				
YEAR	GROWTH	INDIV.	COUNT	TOTAL
Year 0	N/A	$£ 510.00$	203	$£ 103,530.00$
Year 15	0.5	$£ 3,084.00$	203	$£ 626,052.00$
Year 20	0.5	$£ 3,435.00$	203	$£ 697,305.00$

YEAR	TOTAL COMBINED SUMS	
GROWTH	TOTAL	
Year 0	N/A	$£ 380,016.00$
Year 15	0.5	$£ 1,538,537.00$
	0.75	$£ 2,805,460.00$
	1	$£ 3,951,598.00$
Year 20	0.5	$£ 2,627,835.00$
	0.75	$£ 4,022,851.00$
	1	$£ 5,795,041.00$

	TOTAL NET GAIN/LOSS	
YEAR	GROWTH	TOTAL
Year 0	N/A	$-£ 3,252,177.00$
	0.5	$-£ 2,093,656.00$
Year 15	0.75	$-£ 826,733.00$
	1	$£ 319,405.00$
	0.5	$-£ 1,004,358.00$
Year 20	0.75	$£ 390,658.00$
	1	$£ 2,162,848.00$

TIM MOYA ASSOCIATES
arboriculture ecology landscape innovation
The Barn, Feltimores Park, Chalk Lane, Harlow, Essex CM17 OPF
08450943268 | info@tma-consultants.co.uk | www.timmoyaassociates.co.uk

Tim Moya Associates is a trading name of Tim Moya Tree Services Ltd. Company Reg No. 3028475

ABERFELDY VILLAGE MASTERPLAN

