Aberfeldy Village Masterplan Environmental Statement Volume 3: Technical Appendices

Appendix: Air Quality Annex 1: Glossary Annex 2: Traffic Data **Annex 3: Model Verification Study**

C

ANNEX 3 – MODEL VERIFICATION STUDY

<u>NO2</u>

Most nitrogen dioxide (NO₂) is produced in the atmosphere by reaction of nitric oxide (NO) with ozone. It is therefore most appropriate to verify the model in terms of primary pollutant emissions. Verification of concentrations predicted by the ADMS model has followed the methodology presented in LAQM.TG(16).

The model has been run to predict annual mean road-NO_x concentrations at three nearby monitoring sites.

The model output of road-NOx (i.e. the component of total NO_x coming from road traffic) has been compared to the 'measured' road-NO_x (Table 3.1). The 'measured' road NO_x has been calculated from the measured NO₂ concentrations by using the Defra NO_x to NO₂ calculator available on the UK-AIR website.

Table 3.1: Comparison of Modelled and Monitored NOx concentrations

Monitoring Location	Total Monitored NO ₂	Background NO2	Monitored Road NOx	Modelled Road NOx	Ratio
Blackwall	47	35.5	27.2	13.3	2.05
84	39	35.5	7.9	16.9	0.46
83	52	35.5	40.4	21.5	1.88

Figure 3.1: Comparison of Modelled and Monitored Road NOx concentrations

The results in Table 3.1 and Figure 3.1 indicate that the ADMS model under-predicted the road NO_x concentrations at the selected monitoring sites. An adjustment factor was therefore determined as the ratio between the measured road- NO_x contribution and the modelled road- NO_x contribution (1.47). This factor has then been applied to the modelled road- NO_x concentration for each location to provide an adjusted modelled road- NO_x concentration.

The annual mean road-NO₂ concentration was determined using the Defra NO_x:NO₂ spread sheet calculation tool and added to the background NO₂ concentration to produce a total adjusted NO₂ concentration.

Particulate Matter (PM₁₀ and PM_{2.5})

There was insufficient roadside monitoring data available against which the modelling could be verified. Consequently, the verification factor determined above for adjusting the road- NO_x contribution has been applied to the predicted road- PM_{10} and road- $PM_{2.5}$ contributions, consistent with guidance provided in LAQM.TG(16).

Model Uncertainty

An evaluation of model performance has been undertaken to establish confidence in model results. LAQM.TG(16) identifies a number of statistical procedures that are appropriate to evaluate model performance and assess the uncertainty. These include root mean square error (RMSE); fractional bias (FB) and correlation coefficient (CC). These parameters estimate how the model results agree or diverge from the observations. The simplest parameter to calculate and to interpret is the RMSE, which has therefore been used in this assessment to understand the model uncertainty.

The RMSE value calculated after verification was 4.8. Guidance provided in LAQM.TG(16) indicates that for RMSE values higher than 25% of the objective level, that the model should be revisited. Ideally an RMSE value should be within 10% of the air quality objective level. For annual mean NO₂, which has an objective level of $40\mu g/m^3$, this equates to $4\mu g/m^3$. The RMSE value calculated for this assessment is therefore considered to fall within the acceptable limits, therefore the final predictions can be considered to be robust.

