

Design Note

11 and 19 Osiers Road

GLA Response

Revision: 01 Date: 16/09/2019 Project reference: 4618 - GLA 4558 - 9 File path: P:\Projects\4618\Documents\Reports\FRA\GLA Response\4618-Design Note-WA-190916-Rev1.docx

1. Introduction

This design note has been produced to supplement the Flood Risk Assessment document reference 4618-FRA-jk-180726-jk-Rev2-RDCD, to provide additional information and clarification on items raised by the GLA during the Stage 1 consultation for the proposed development at 9, 11 and 19 Osiers Road, Wandsworth.

Within this report risks are expressed as an annual exceedance probability (AEP). This is the percentage probability that a given event could occur in any given year.

2. GLA Comments

Following the Stage 1 consultation the GLA made the following comments in an email dated 13th August 2019:

Information requested	Location Addressed
2. The surface water drainage strategy for the proposed development does not comply with the London Plan policy 5.13 (and draft policy SI.13), as it does not give appropriate regard to the drainage hierarchy, greenfield runoff rate and climate change. Further details on how SuDS measures at the top of the drainage hierarchy will be included in the development, and how greenfield runoff rate will be achieved should be provided. Additional attenuation storage volumes calculations, attenuation tank dimensions, and SuDS maintenance information should also be provided.	Section 3.3
3. The proposed development does not comply with the requirements of London Plan policy 5.15 (and draft New London Plan policy SI.15) as no water consumption target has been identified for the residential component of the development.	Section 3.8

9. The calculations of Greenfield runoff rates adopts an urbanisation factor of 0.75, representing partially developed catchment. The Greenfield runoff rate is intended to represent a partially developed catchment (literally a 'green field') and the use of an urbanisation factor greater than zero is incorrect. The applicant should provide revised Greenfield runoff calculations using an urbanisation factor of zero.	Section 3.1
 10. The surface water drainage strategy addresses the Drainage Hierarchy, and notes that rainwater harvesting and green roofs would be possible options, and that infiltration is not feasible due to the site geology. Attenuation tanks are proposed as the main SuDS measure, and these are the only measures that are shown on plans. Permeable paving is mentioned but does not appear on landscaping plans. Opportunities for green infrastructure-based SuDS public realm areas have not been considered. This approach does not satisfy the requirements of London Plan policy 5.13 (and draft London Plan SI.13). The applicant should provide more detailed plans including rainwater harvesting, green/blue roofs, permeable paving and green infrastructure-based SuDS such as tree pits and raingardens. 	Section 3.4
11. The attenuation tank volume have been estimated using a simplified method, which gives an estimated attenuation requirement of 300m ³ for a design discharge rate of 2.3l/s in a 100 year event with 40% climate change allowance. Section 6.3 of the FRA suggests a range of potential design discharge rates, up to Q100. Where a design discharge rate greater than Q _{bar} is proposed, more detailed calculations should be provided to show resultant discharge rates in a range of design events up to the 100 year event with 40% climate change allowance.	Section 3.5
12. Section 6.2.1 and 6.3 of the FRA show a 30% climate change allowance for design. This is not consistent with the value adopted in section 6.2.4 or current government climate change allowance guidance for small catchment areas.	Section 3.2
13. No maintenance plan has been included in the drainage strategy. The applicant should include a maintenance plan showing the maintenance and inspection frequency, and maintenance activities for each SuDS measure proposed.	Section 3.6
14. No assessment of the exceedance flow paths has been provided. Additional information should be provided showing that exceedance flow paths, through the site are available in the case of attenuation system blockage or an extreme rainfall event.	Section 3.7
15. The surface water drainage strategy for the proposed development does not comply with London Plan policy 5.13 (a draft policy SI.13), as it does not give appropriate regard to the drainage hierarchy, Greenfield runoff rate and climate change. Further details on how SuDS measure at the top of the drainage hierarchy will be included in the development, and how Greenfield runoff rates will be achieved should be provided. Additional attenuation	Section 3.3

storage volumes calculation, attenuation tank dimensions, and SuDS maintenance information should also be provided.

Following the initial submission of the report, reference 4618-LET-KJ-190815-Rev1, response from Reece Harris was received in an email dated 3rd September 2019. This response accepted all issues raised by GLA except from point 11 and 15 (partially addressed). To address these points a detailed design model was produced along with proposed schematic drawings which are presented in Appendix D & E respectively.

3. Proposed SuDS Drainage Details & Calculations

3.1. Greenfield Runoff Rates

The FRA proposed a Greenfield runoff rate of 2.3 l/s based on a site area of 0.41ha and applying an urbanisation factor of 0.75. Following the GLA's comments on the Greenfield calculation this rate has been reviewed and revised to represent the greenfield runoff rate for the site excluding the urbanisation factor. The rates have been calculated using the WINDES Micro-Drainage software SUDS function which is based on the FSR method. The calculations for the rates are presented in Appendix D of this report. The table below summarises the Greenfield runoff rates for the 50%, 3.3% and 1% annual exceedance probabilities.

Greenfield Runoff Rates							
Annual Exceedance Probability (AEP)	Greenfield Runoff Rate (I/s)						
50% AEP	Q _{bar}	0.6					
3.3% AEP	Q ₃₀	1.4					
1% AEP	Q ₁₀₀	2.0					

3. 2. Climate Change

The climate change allowance is now taken as 40% in line with upper estimate of the current government climate change allowances and the London Plan.

3. 3. Drainage Hierarchy

In accordance with policy SI.13 of the new Draft London plan which Is largely in keeping with policy 5.13 of the London plan, all new developments should utilise Sustainable Drainage Systems (SuDS) unless there are practical reasons for not doing so, and should aim to achieve greenfield run-off rates and ensure that surface water run-off is managed as close to its source as possible in line with the following drainage hierarchy:

- 1) Rainwater use as a resource (for example rainwater harvesting and blue roofs for irrigation)
- 2) Rainwater infiltration to ground at or close to source
- *3) Rainwater attenuation in green infrastructure features for gradual release (for example green roofs, rain gardens)*
- 4) Rainwater discharge direct to a watercourse (unless not appropriate)
- 5) Rainwater attenuation above ground (including blue roofs);

- *6) Rainwater attenuation below ground;*
- 7) Controlled rainwater discharge to a surface water sewer or drain
- 8) Controlled rainwater discharge to a combined sewer

The summary below provides site specific comments on how the drainage hierarchy has been followed:

1) Rainwater use as a resource (for example rainwater harvesting and blue roofs for irrigation)

Blue roofs are proposed at podium level as a source control SuDS feature, however, due to the high density nature of the development there is little permeable landscaped area that require irrigation. It is therefore not considered practical to harvest rainwater for the purposes of irrigation. Green and brown roofs provide a degree of storage within the substrate that will naturally be used to irrigate the roof.

2) Rainwater infiltration to ground at or close to source

The site investigation report indicates infiltration is not possible due to the underlying strata and groundwater level. Tanked permeable paving is proposed to the external ground level paved areas.

3) Rainwater attenuation in green infrastructure features for gradual release (for example green roofs, rain gardens).

Green and Brown roofs are proposed at roof level and raised planters at ground level.

4) Rainwater discharge direct to a watercourse (unless not appropriate)

The route to the River Wandle crosses 3rd party land and is therefore not considered to be viable

7) Controlled rainwater discharge to a surface water sewer or drain

There are no known surface water sewers in the vicinity of the site.

8) Controlled rainwater discharge to a combined sewer

There are no known combined sewers in the vicinity of the site. Surface water will likely need to be discharged to the designated foul water sewer which is assumed to be combined as existing, subject to Thames Water approval.

3. 4. Proposed Sustainable drainage features

In line with the London Plan the SuDS selected for the proposed development should be appropriate for the development and for the location, on this basis the following SuDS features are proposed:

- Blue roofs
- Green/ Brown roofs
- Permeable paving
- Below ground attenuation tank

Blue roofs are proposed at podium level in areas that are not above residential units. It is proposed that blue roofs will be provided in the form attenuation crates between 85mm and 100mm deep and with 95% void ratio. Due to the depth of the attenuation feature the blue roof is assumed to only attenuate rainwater falling directly onto it and would not have the capacity to attenuate rainwater from roof level as well.

Green roofs are proposed at roof level as indicated on drawing T20P14 included in Appendix A and is represented on the Indicative SuDS Strategy drawing in Appendix E. The drawing highlights roof areas that are to be used for photovoltaic modules and green roofs, roof areas that are to be used for photovoltaic modules are not considered viable for green roofs as well.

The use of permeable block paving is proposed on external hard landscaped areas. Due to the lack of infiltration potential the paving would have to be 'Type C – No infiltration' construction. As noted in the drainage strategy, storage in permeable paving is assumed to be provided in the form of a 300mm subbase at 30% void ratio.

At this stage of the design detailed plans of SuDS measures and landscaping features cannot be provided as the design of the building is not at detailed design. However approximate areas and depths of proposed SuDS features and the benefits provided by them have been summarised.

The strategy for implementing and providing detailed design of green infrastructure based SuDS features has been agreed with the Architect, Landscape Architect and Client. However, large scale rainwater harvesting is not practicable for implementation for the project.

3.5. Discharge rates

In line with the FRA and CIRIA guidance the peak discharge rate off site is proposed to match the Q_{100} discharge rate for the 1% AEP rainfall with a 40% allowance for climate change. The 3.3% AEP discharge rate should target the Q_{30} Greenfield rate and the 50% AEP discharge rate should target the Q_{bar} greenfield rate for the site.

CIRIA guidance notes that the implementation of 'long term storage' features such as green roofs, brown roofs and permeable paving reduces the volume of discharge off-site. A greater percentage of runoff is prevented from discharging in more frequent storm events due to the process of evapotranspiration and wetting of soil and aggregate, as well as temporary storage provided by the green roof and permeable paving subbase. In addition the SuDS features are a form of 'source control' SuDS which provide treatment to surface water runoff in line with the SuDS management train.

With consideration given to the above the 50% AEP discharge rate will be lower than the Q_{30} discharge rate due to the use of long term storage features, however the Q_{bar} discharge rate is considered unreasonable to achieve without introducing a risk of blockage. This is because the size of the flow control orifice will be smaller which in turn increases maintenance issues associated with them.

The 3.3% AEP will be restricted to the Q_{30} discharge rate and the 1% AEP restricted to the Q_{100} discharge rate through the implementation of a series of flow control, for example at podium level to attenuation flows from the blue roof as well as a complex flow control prior to discharging off site.

Appendix D provides detailed calculations on the discharge rates for Q_{bar} , Q_{30} and Q_{100} and the required volumes of storage required has been established. The detailed design has been based on providing the following volumes:

Attenuation Feature	Storage Volume Provided
Below ground attenuation tank	228m ³
Permeable Paving subbase	100m ³
Blue Roof	8m ³

The discharge modelled represents a 'Hydrobrake' devise with a discharge profile close to linear. By adopting such a profile the risk of blockage and the increased maintenance this results in is reduced.

The maximum discharge rates for various storms are given below:

Storm Event	Max Discharge (I/s)
100% AEP	1.2
3.33% AEP	1.5
1% AEP	1.9

It can be seen that the discharge rates for the high intensity low frequency storms are less than or equal to the greenfield run off rates noted in section 3.1.

The discharge rate for the lower intensity storms (50% of 100% AEP) will be slightly above the greenfield run-off. However, to restrict these storms to a run off of 0.6l/s would be impractical and increase flood risk on site.

3. 6. Maintenance Plan

A maintenance plan for each of the proposed SuDS techniques has been included in Appendix C.

3.7. Exceedance Flows

An assessment of the exceedance flow paths based on the existing site levels demonstrates that the exceedance flows will be from the north eastern corner of the site to the southwestern towards the public highway. The topographical survey is included in Appendix B.

In the event of a system blockage or an extreme rainfall event the site levels and surface waters system should be designed to convey runoff away from the building and its users. The diagram below demonstrates the overland flow routes.

Due to the upper climate change limit being used for the drainage design exceedance flows are not expected to be significant. In addition most of the external landscaping will be permeable paving, so a flows generated by a blockage of the surface water system at a particular point in the system would likely drain back into the system at another point, without generating significant flows off site.

Figure 3.1 Exceedance flow paths

3.8. Water Consumption Target

The residential component will be designed so that the mains water consumption would meet a target of 105 litres or less per person per day (excluding 5 litres per person per day for external water use). This target will be met by specifying fittings in accordance with the optional requirement' fitting approach as noted on table 2.2 in buildings regulations approved document G.

4. Conclusion

It is intended that this design note demonstrates the sustainable drainage principles set out for the proposed development and addresses the GLA comments regarding the drainage proposals for the site.

Prepared by	Keval Joshi	William Alexander
Checked by	Kate Mackay	
Approved by	Andy Stanford	

Yours Sincerely,

William Alexander

Infrastructure Engineer

Design Notes 11 and 19 Osiers Road Ref: P:\Projects\4618\Documents\Reports\FRA\GLA Response\4618-Design Note-WA-190916-Rev1.docx Date: 16 September 2019

Appendix A – Proposed Development Architectural Plans

Registered Office: 32 Lafone Street, London, SE1 2LX

xbold with exit ni batacibni exis erit its batiniq nedwi ritginel ni mo0r si elace sirf. mo0r 6 6 6 5 7 0

NOTES Comparing the second second comparing the second seco

Design Notes 11 and 19 Osiers Road Ref: P:\Projects\4618\Documents\Reports\FRA\GLA Response\4618-Design Note-WA-190916-Rev1.docx Date: 16 September 2019

Appendix B – Topographical Survey

Registered Office: 32 Lafone Street, London, SE1 2LX

Design Notes 11 and 19 Osiers Road Ref: P:\Projects\4618\Documents\Reports\FRA\GLA Response\4618-Design Note-WA-190916-Rev1.docx Date: 16 September 2019

Appendix C – SuDS Maintenance Schedule

Registered Office: 32 Lafone Street, London, SE1 2LX Project No. 4618 Ref: P:\Projects\4618\Documents\Reports\FRA\GLA Response\Attachment C - Maintenance Schedule\Maintenance Schedule.docx

Walsh Structural and Civil Engineers

32 Lafone Street London SE1 2LX

+44 (0) 20 7089 6800 london@walsh.co.uk

walsh.co.uk

Responsibility Component Task Frequency Green Roofs Inspect Vegetation-Free Zones Annual once Site Maintenance established Contractor/Specialist **Remove Debris** Annual once Maintenance Contractor established Deadhead As needed Check Irrigation/Moisture Levels То Manufacturer's guidance As needed only Fertilising Blue roofs and Inspections of flow control outlets 1 Month Site Maintenance associated ancillaries. Contractor/ Specialist Inspections of rainwater inlet 1 Month (This is TBC following Maintenance Contractor chambers appointment of manufacturer) Inspection of hard standing 8-10 Weeks surfaces Removal of silt from chambers As required Record of As required inspections/maintenance undertaken to be kept **Inspection and Control** 3 Months Site Maintenance Inspect surface structures Chambers removing obstructions and silt as Contractor necessary. Check there is no physical damage. Remove cover and inspect 1 Year Site Maintenance ensuring water is flowing freely Contractor and that the exit route for water is unobstructed. Remove debris and silt. Inlets and Outlets to Inspect, remove silt and debris 3 months Site Maintenance SUDS features Contractor Geocellular Maintenance to be carried out as As needed **Specialist Maintenance** Attenuation Tank Contractor necessary

Osiers Road, Sustainable Drainage Operation and Maintenance Schedule

Design Notes 11 and 19 Osiers Road Ref: P:\Projects\4618\Documents\Reports\FRA\GLA Response\4618-Design Note-WA-190916-Rev1.docx Date: 16 September 2019

Appendix D – MicroDrainage Calculations

Registered Office: 32 Lafone Street, London, SE1 2LX

32 Lafone Street London SEI 2LX Date 16/08/2019 11:33 File Micro Drainage Source Control 2015.1 <u>ICP SUDS Mean Annual Flood</u> Input Return Period (years) 100 Soil 0.300 Area (ha) 0.410 Urban 0.000 SAAR (mm) 600 Region Number Region 6 Results 1/s QBAR Rural 0.6 QBAR Urban 0.6 Q100 years 2.0 Q1 year 0.5 Q30 years 1.4 Q100 years 2.0
London SEI 2LX Date 16/08/2019 11:33 Designed by K.Joshi File Checked by Micro Drainage Source Control 2015.1 ICP SUDS Mean Annual Flood Input Return Period (years) 100 Soil 0.300 Area (ha) 0.410 Urban 0.000 SAAR (mm) 600 Region Number Region 6 Results 1/s QBAR Rural 0.6 Q100 years 2.0 Q1 year 0.5 Q30 years 1.4 Q100 years 2.0
SEI 2LX Date 16/08/2019 11:33 Designed by K.Joshi File Checked by Micro Drainage Source Control 2015.1 ICP SUDS Mean Annual Flood Input Return Period (years) 100 Soil 0.300 Area (ha) 0.410 Urban 0.000 SAAR (mm) 600 Region Number Region 6 QBAR Rural 0.6 QBAR Urban 0.6 Q100 years 2.0 Q1 year 0.5 Q30 years 1.4 Q100 years 2.0 Q100 years 2.0
Date 16/08/2019 11:33 Pesigned by K.Joshi Checked by Micro Drainage Source Control 2015.1 ICP SUDS Mean Annual Flood Input Return Period (years) 100 SAAR (mm) 600 Region Number Region 6 Results 1/s QBAR Rural 0.6 QBAR Urban 0.6 Q100 years 2.0 Q1 year 0.5 Q30 years 1.4 Q100 years 2.0
File Checked by Checke
Micro Drainage Source Control 2015.1 <u>ICP SUDS Mean Annual Flood</u> Input Return Period (years) 100 Soil 0.300 Area (ha) 0.410 Urban 0.000 SAAR (mm) 600 Region Number Region 6 Results 1/s QBAR Rural 0.6 QBAR Urban 0.6 Q100 years 2.0 Q1 year 0.5 Q30 years 1.4 Q100 years 2.0
ICP SUDS Mean Annual Flood Input Return Period (years) 100 Soil 0.300 Area (ha) 0.410 Urban 0.000 SAAR (mm) 600 Region Number Region 6 Results 1/s QBAR Rural 0.6 QBAR Urban 0.6 Q100 years 2.0 Q1 year 0.5 Q30 years 1.4 Q100 years 2.0
ICP SUDS Mean Annual Flood Input Return Period (years) 100 Soil 0.300 Area (ha) 0.410 Urban 0.000 SAAR (mm) 600 Region Number Region 6 Results 1/s QBAR Rural 0.6 QBAR Urban 0.6 Q100 years 2.0 Q1 year 0.5 Q30 years 1.4 Q100 years 2.0
Input Return Period (years) 100 Soil 0.300 Area (ha) 0.410 Urban 0.000 SAAR (mm) 600 Region Number Region 6 Results 1/s QBAR Rural 0.6 QBAR Urban 0.6 Q100 years 2.0 Q1 year 0.5 Q30 years 1.4 Q100 years 2.0
Return Period (years) 100 Soil 0.300 Area (ha) 0.410 Urban 0.000 SAAR (mm) 600 Region Number Region 6 Results 1/s QBAR Rural 0.6 QBAR Urban 0.6 Q100 years 2.0 Q1 year 0.5 Q30 years 1.4 Q100 years 2.0
Results l/s QBAR Rural 0.6 QBAR Urban 0.6 Q100 years 2.0 Q1 year 0.5 Q30 years 1.4 Q100 years 2.0
QBAR Rural 0.6 QBAR Urban 0.6 Q100 years 2.0 Q1 year 0.5 Q30 years 1.4 Q100 years 2.0
Q100 years 2.0 Q1 year 0.5 Q30 years 1.4 Q100 years 2.0
Q1 year 0.5 Q30 years 1.4 Q100 years 2.0
Q30 years 1.4 Q100 years 2.0
Q100 years 2.0

Walsh	Assoc	iates										Pa	ige 1
32 Laf	ione S	treet										L.	
London													
SE1 2L								N	lirro				
Date 1	.6/09/	2019 2	20:16		De	esign	ed by	W.Al	exand	ler		n	rainane
File 4	1618-W	A-1909	912-MD	-001.MI	DX Ch	necke	d by						laniage
Micro	Drain	age			Ne	etwor	k 201	7.1.2					
	STORM SEWER DESIGN by the Modified Rational Method												
	Design Criteria for Storm												
			Pij	pe Sizes	STANDA	RD Ma	nhole	Sizes	STAND.	ARD			
				FSR Rain	fall Mc	odel -	Engla	nd and	Wales	5			
		Reti	ırn Per	iod (yea M5-60	ars) (mm) 20	100		Add F	rlow /	Clir	nate (PIMP	(응) 100 (응) 0
				Rati	_0 R 0	.428		Mir	nimum	Backo	drop H	leight	(m) 0.200
		Maximur	n Rainf	all (mm/	'hr)	50	<i></i>	Max	kimum	Backo	drop H	leight	(m) 1.500
Maximi	um Time	e of Cor Foi	ncentra 11 Sewa	ition (mi ige (l/s/	ns) (ha) 0	.000	Min Des Min	Vel fo	eptn I or Aut	or Op .o Des	sign c	ation nlv (m	(m) 1.200 /s) 1.00
		Volumet	tric Ru	noff Coe	eff. 0	.750	Mi	in Slop	pe for	Opti	imisat	ion (1	:X) 500
				Do	aigned	uith 1	orrol (off:+-					
				De	signed	WIUN I	Jevel 3	SOLLIUS	5				
				Networ	k Desi	ign I	able	for S	torm				
				« — In	dicates	s pipe	capac	ity <	flow				
PN	Lengt	h Fall	Slope	I.Area	T.E.	Ва	ase	k	HYD	DIA	Sect	ion Typ	e Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(1/s)	(mm)	SECT	(mm)			Design
1.000	28.47	9 0.673	42.3	0.034	4.00		0.0	0.600	0	150	Pipe	/Condui	it 🧬
1.001	13.23	4 0.132	2 100.3	0.092	0.00		0.0	0.600	0	225	Pipe	/Condui	it 🔐
1.002	13.23	4 0.132	2 100.3	0.000	0.00		0.0	0.600	0	225	Pipe	/ Condui	
2.000	3.33	7 0.033	3 101.1	0.054	4.00		0.0	0.600	0	100	Pipe	/Condui	lt 🤒
2.001	4.75	1 5.062	2 0.9	0.000	0.00		0.0	0.600	0	100	Pipe	/Condui	lt 🦰
1.003	14.38	6 0.096	149.9	0.084	0.00		0.0	0.600	0	225	Pipe	/Condui	it 💣
1.004	14.38	6 0.096	149.9	0.000	0.00		0.0	0.600	0	225	Pipe	/Condu	it 🗗
1.005	23 43	7 0.049) 151.2 5 150 2	0.024	0.00		0.0	0.600	0	225	Pipe	/Condui /Condui	it 🗗
1.000	20,10	1 0.100	100.1	0.011	0.00		0.0	0.000	0	220	1 1 1 0	,	
Network Results Table													
I	PN 1	Rain	T.C.	US/IL Σ	I.Area	ΣΙ	Base	Foul	Add H	low	Vel	Cap	Flow
	(n	m/hr) ((mins)	(m)	(ha)	Flow	(1/s)	(1/s)	(1/	s)	(m/s)	(1/s)	(1/s)
1.	000	50.00	4.31	4.800	0.034		0.0	0.0		0.0	1.55	27.4	4.6
1.	001	50.00	4.47	4.052	0.126		0.0	0.0		0.0	1.31	51.9	17.1
1.	002	50.00	4.64	3.920	0.126		0.0	0.0		0.0	1.31	51.9	17.1
2.	000	50.00	4.07	9.008	0.054		0.0	0.0		0.0	0.76	6.0«	7.3
2.	001	50.00	4.08	8.975	0.054		0.0	0.0		0.0	8.05	63.3	7.3
1	003	50.00	4 87	3.788	0 264		0 0	0 0		0 0	1 07	42 A	35.8
1.	004	50.00	5.09	3.692	0.264		0.0	0.0		0.0	1.07	42.4	35.8
1.	005	50.00	5.21	3.596	0.288		0.0	0.0		0.0	1.06	42.2	39.0
1.	006	50.00	5.58	3.547	0.329		0.0	0.0		0.0	1.06	42.3«	44.6
					982-20	17 VI	D Soli	ition					
						+ / ^	L NOTI	ィレエロロン	ر ر				

Walsh Ass	sociates										Pa	age 2	
32 Lafone	e Street												
London											L L	1	
SE1 2LX											N	<i>licco</i>	Jun
Date 16/0	09/2019 2	0:16		De	esign	ed by	W.Ale	exand	er				
File 4618	8-WA-1909	12-MD-	-001.MD	X Ci	hecke	d by						Ji dii id	ye
Micro Dra	ainage			Ne	etwor	k 201	7.1.2						
			Networ	k Des	ign T	able	for S	torm					
		- 1			_								
PN Le	(m) (m)	$(1 \cdot \mathbf{X})$	1.Area (ha)	T.E. (ming)	Ba Flow	(1/s)	к (mm)	HYD SECT	DIA (mm)	Sect	ion Ty	pe Aut Desi	o m
	(,	()	(114)	(1 10"	(1,0)	()	0201	(2001	9
2 000 0		100 1	0 000	4 00		0 0	0 0 0 0		1 5 0	Dine	(Canalu	4 -	
3.000 8	.707 0.087	100.1	0.000	4.00		0.0	0.600	0	150	Pipe, Pipe,	/Condu	it 🗗	
3.002 17	.413 0.174	100.1	0.000	0.00		0.0	0.600	0	150	Pipe,	/Condu	it 🔐	
											(
1.007 4	638 0 056	100.1	0.054	0.00		0.0	0.600	0	150 150	Pipe, Pipe	/Condu /Condu	it 💾	
1.009 3	.814 0.488	7.8	0.000	0.00		0.0	0.600	0	150	Pipe,	/Condu	it 🔒	
												-	
			Ne	etwork	k Resi	ilts :	「able						
DN	Rain	тс т		T Area	5. F	laso	Foul	Add F	'low	Vel	Can	Flow	
14	(mm/hr) (mins)	(m)	(ha)	Flow	(1/s)	(1/s)	(1/:	5)	(m/s)	(1/s)	(1/s)	
3.000	50.00	4.14	1.739	0.000		0.0	0.0		0.0	1.00	17.7	0.0	
3.001	50.00	4.29 3	.652	0.000		0.0	0.0		0.0	1.00	17.7	0.0	
3.002	50.00	4.58 3	8.565	0.000		0.0	0.0		0.0	1.00	17.7	0.0	
1 007	50 00	5 66 3	391	0 383		0 0	0 0		0 0	1 00	17 7«	51 9	
1.008	50.00	5.75 3	3.344	0.383		0.0	0.0		0.0	1.00	17.8«	51.9	
1.009	50.00	5.77 3	8.288	0.383		0.0	0.0		0.0	3.63	64.1	51.9	

Walsh Associates		Page 3
32 Lafone Street		
London		4
SE1 2LX		Micco
Date 16/09/2019 20:16	Designed by W.Alexander	
File 4618-WA-190912-MD-001.MDX	Checked by	Dialitage
Micro Drainage	Network 2017.1.2	

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdro (mm)
1	6.300	1.500	Open Manhole	1200	1.000	4.800	150				
2	6.150	2.098	Open Manhole	1200	1.001	4.052	225	1.000	4.127	150	
3	6.050	2.130	Open Manhole	1200	1.002	3.920	225	1.001	3.920	225	
3	9.110	0.102	Junction		2.000	9.008	100				
3	9.110	0.135	Junction	0	2.001	8.975	100	2.000	8.975	100	
3	5.950	2.162	Open Manhole	1200	1.003	3.788	225	1.002	3.788	225	
								2.001	3.913	100	
5	5.750	2.058	Open Manhole	1200	1.004	3.692	225	1.003	3.692	225	
4	5.550	1.954	Open Manhole	1200	1.005	3.596	225	1.004	3.596	225	
5	5.530	1.983	Open Manhole	1200	1.006	3.547	225	1.005	3.547	225	
6	6.200	2.461	Open Manhole		3.000	3.739	150				
11	6.020	2.368	Junction		3.001	3.652	150	3.000	3.652	150	
8	5.840	2.275	Junction	0	3.002	3.565	150	3.001	3.565	150	
6	5.480	2.089	Open Manhole	1200	1.007	3.391	150	1.006	3.391	225	
								3.002	3.391	150	
7	5.400	2.056	Open Manhole	1200	1.008	3.344	150	1.007	3.344	150	

3.288

OUTFALL

150 1.008

1.009

3.288

2.800

150

150

Manhole Schedules for Storm

1200 1.009

1800

8 5.350 2.062 Open Manhole

5.260 2.460 Open Manhole

Walsh Associates		Page 4
32 Lafone Street		
London		L'
SE1 2LX		Micco
Date 16/09/2019 20:16	Designed by W.Alexander	
File 4618-WA-190912-MD-001.MDX	Checked by	Diamaye
Micro Drainage	Network 2017.1.2	

Area Summary for Storm

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total
Number	Туре	Name	(%)	Area (ha)	Area (ha)	(ha)
1 000	Ilsor	_	100	0 009	0 009	0 009
1.000	User	_	100	0.026	0.026	0.034
1 001	User	_	100	0.020	0.020	0.031
1.001	User	_	100	0.051	0.051	0.091
1 002	0361	_	100	0.001	0.001	0.002
2 000	Usor	_	100	0.000	0.000	0.000
2.000	0361	_	100	0.004	0.004	0.004
1 003	Usor	_	100	0.000	0.000	0.000
1.005	USEL		100	0.030	0.030	0.050
	User	-	100	0.020	0.020	0.038
1 004	User	-	100	0.029	0.029	0.084
1.004	-	-	100	0.000	0.000	0.000
1.005	User	-	100	0.024	0.024	0.024
1.006	User	-	100	0.006	0.006	0.006
	User	-	100	0.035	0.035	0.041
3.000	-	-	100	0.000	0.000	0.000
3.001	-	-	100	0.000	0.000	0.000
3.002	-	-	100	0.000	0.000	0.000
1.007	User	-	100	0.012	0.012	0.012
	User	-	100	0.013	0.013	0.024
	User	-	100	0.030	0.030	0.054
1.008	_	_	100	0.000	0.000	0.000
1.009	-	-	100	0.000	0.000	0.000
				Total	Total	Total
				0.383	0.383	0.383

Free Flowing Outfall Details for Storm

Out Pipe	fall Number	Outfall Name	c.	Level (m)	Ι.	Level (m)	I.	Min Level (m)	D,L (mm)	W (mm)
	1.009			5.260		2.800		0.000	1800	0

Simulation Criteria for Storm

Volumetric Runoff Coeff	0.750	Additional Flow - % of Total Flow 0.000
Areal Reduction Factor	1.000	MADD Factor * 10m³/ha Storage 2.000
Hot Start (mins)	0	Inlet Coeffiecient 0.800
Hot Start Level (mm)	0	Flow per Person per Day (1/per/day) 0.000
Manhole Headloss Coeff (Global)	0.500	Run Time (mins) 60
Foul Sewage per hectare (l/s)	0.000	Output Interval (mins) 1
Number of Input Hydrog	aphs () Number of Storage Structures 10

Number of Online Controls 2 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Walsh Associates		Page 5
32 Lafone Street		
London		L.
SE1 2LX		Micco
Date 16/09/2019 20:16	Designed by W.Alexander	
File 4618-WA-190912-MD-001.MDX	Checked by	Urainage
Micro Drainage	Network 2017 1 2	
	Network 2017.1.2	
Sunthat	tic Rainfall Details	
	Lie Mainfail Decails	
Rainfall Model	FSR Profile Type Su	mmer
Return Period (years)	100 Cv (Summer) 0	.750
Region Engl.	and and Wales Cv (Winter) 0	.840
M5-60 (mm)	20.000 Storm Duration (mins)	30
Ratio R	0.428	

Walsh Associates						Page 6
32 Lafone Street						
London						4
SE1 2LX						Micco
Date 16/09/2019 20:16		Designe	ed by W.A	lexander		
File 4618-WA-190912-MD-00)1.MDX	Checked	l by			Urainage
Micro Drainage		Networl	2017.1.	2		
	Online	Control	s for Sto	orm		
Orifice Manh	nole: 3,	DS/PN:	2.001, V	olume (m [:]	³): 0.0	
Diameter (m) 0.038	Discharge	e Coeffic	ient 0.600	Invert Lev	vel (m) 8.	975
Hydro-Brake® Optim	um Manho	ole: 6,	DS/PN: 1	.007, Vol	ume (m³)	: 3.5
	Unit	Referenc	ce MD-SCU-0	037-2000-1	850-2000	
	Design	n Head (r	n)		1.850	
	Design I	r⊥ow (⊥/s Flush-Flo	5)) TM	Ca	2.0 lculated	
		Objectiv	ve Linear	discharge	profile	
	Aj	pplicatio	n		Surface	
	Sump	Availab motor (mr	_e		Yes	
	Invert	Level (n	n)		3.391	
Minimum Outlet	Pipe Dia	meter (mr	n)		75	
Suggested Ma	nhole Diam	meter (mr	n)		1200	
C	ontrol Po	ints	Head (m)	Flow (l/s))	
Design	Point (Ca	lculated) 1.850	2.0	C	
	F.	'lush-Flo Kick-Flo	m 0.056	0.4	4	
Mean Fl	.ow over H	lead Rang	e –	1.4	4	
The hydrological calculatio	ns have b	een based	d on the He	ad/Dischar	ge relatio	nship for the
Hydro-Brake Optimum® be uti invalidated	lised the	n these :	storage rou	ting calcu	lations wi	ll be
Depth (m) Flow (l/s) Depth	(m) Flow	(1/s) D	epth (m) F	low (l/s)	Depth (m)	Flow (l/s)
0.100 0.5 1	.200	1.6	3.000	2.5	7.000	3.7
0.200 0.7 1	.400	1.8	3.500	2.7	7.500	3.8
	.600	1.9	4.000	2.9	8.000	4.0 4.1
0.500 1.1 2	.000	2.0	5.000	3.2	9.000	4.2
0.600 1.2 2	.200	2.2	5.500	3.3	9.500	4.3
0.800 1.4 2	.400	2.3	6.000	3.5		
1.000 1.5 2	.600	2.3	6.500	3.6		
	©1982-	2017 XE	Solution	ns		

Walsh Associates				Page 7
32 Lafone Street				
London				Ly .
SE1 2LX				Mirro
Date 16/09/2019 20:16	Desig	ned by W.Al	exander	Drainago
File 4618-WA-190912-MD-001.MD	Check	ed by		Diamage
Micro Drainage	Netwo	rk 2017.1.2		
Storag	o Struct	uros for St	orm	
	je struct	ules for st		
Porous Car E	Park Manh	nole: 1, DS/	PN: 1.000	
Infiltration Coefficient Ba	se (m/hr)	0.00000	Width (m)	5.0
Membrane Percolatio	n (mm/hr)	1000	Length (m)	22.0
Max Percolat	ion (l/s)	30.6 2.0 Depre	Slope (1:X)	0.0
Sale	Porosity	0.30 Ev	aporation (mm/day)	3
Invert	Level (m)	5.750 Ca	p Volume Depth (m)	0.300
Porous Car E	ark Manh	nole: 2, DS/	PN: 1.001	
Infiltration Coefficient Ba	se (m/hr)	0 00000	Width (m)	10 0
Membrane Percolation	n (mm/hr)	1000	Length (m)	22.6
Max Percolat	ion (l/s)	62.8	Slope (1:X)	0.0
Safe [.]	ty Factor	2.0 Depre	ssion Storage (mm)	5
Invert	Level (m)	5.600 Ca	p Volume Depth (m)	0.300
Cellular Sto	rage Man	hole: 3, DS,	/PN: 1.002	
Ir Infiltration Coefficie	vert Leve	1 (m) 3.920	Safety Factor 2.0) -
Infiltration Coefficie	ent Base (n ent Side (n	n/hr) 0.00000	Porosity 0.93)
		1		
Depth (m) Area (m ²) Inf.	Area (m²)	Depth (m) Are	ea (m²) Inf. Area	(m²)
0.000 75.5	0.0	0.801	0.0	0.0
0.800 75.5	0.0			
Porous Car F	ark Manh	ole: 3, DS/	PN: 2.000	
Infiltration Coefficient Bas	e (m/hr)	0.00000	Width (m)	17.0
Membrane Percolation	(mm/hr)	1000	Length (m)	5.0
Max Percolati	on (l/s)	23.6	Slope (1:X)	1000.0
Safet	y Factor	2.0 Depres	ssion Storage (mm)	5
Invert I	evel (m)	9.008 Car	volume Depth (m)	0.100
Porous Car B	ark Manh	nole: 3, DS/	PN: 1.003	
Infiltration Coefficient Ba	se (m/hr)	0.00000	Width (m)	10.0
Membrane Percolation Max Percolat	n (mm/nr)	93.1	Slope (1:X)	33.5
Safe	ty Factor	2.0 Depre	ssion Storage (mm)	5
	Porosity	0.30 Ev	aporation (mm/day)	3
Invert	Level (m)	5.400 Ca	p volume Depth (m)	0.300
©19	82-2017	XP Solutions	5	
·				

Walsh Associates	Page 8
32 Lafone Street	
London	
SE1 2LX	Misso
Date 16/09/2019 20:16	Designed by W.Alexander
File 4618-WA-190912-MD-001.MDX	Checked by
Micro Drainage	Network 2017 1 2
	Network 2017.1.2
<u>Cellular Storage</u>	e Manhole: 5, DS/PN: 1.004
Invert Infiltration Coefficient E Infiltration Coefficient S	Level (m) 3.692 Safety Factor 2.0 Base (m/hr) 0.00000 Porosity 0.95 Side (m/hr) 0.00000
Depth (m) Area (m²) Inf. Area	a (m²) Depth (m) Area (m²) Inf. Area (m²)
0.000 100.0 0.800 100.0	0.0 0.0 0.0
Porous Car Park	Manhole: 4, DS/PN: 1.005
Infiltration Coefficient Base (Membrane Percolation (m Max Percolation Safety F Por Invert Leve	m/hr)0.00000Width (m)10.0m/hr)1000Length (m)23.5(1/s)65.3Slope (1:X)0.0actor2.0Depression Storage (mm)5osity0.30Evaporation (mm/day)31 (m)5.000Cap Volume Depth (m)0.300
Cellular Storage	Manhole: 11, DS/PN: 3.001
	,,,
Invert Infiltration Coefficient E Infiltration Coefficient S	L Level (m) 3.652 Safety Factor 2.0 Base (m/hr) 0.00000 Porosity 0.95 Side (m/hr) 0.00000
Depth (m) Area (m²) Inf. Area	a (m ²) Depth (m) Area (m ²) Inf. Area (m ²)
0.000 49.0 1.200 49.0	0.0 1.201 0.0 0.0 0.0
<u>Cellular Storage</u>	e Manhole: 8, DS/PN: 3.002
Invert Infiltration Coefficient E Infiltration Coefficient S	Level (m) 3.565 Safety Factor 2.0 Base (m/hr) 0.00000 Porosity 0.95 Side (m/hr) 0.00000
Depth (m) Area (m²) Inf. Area	a (m ²) Depth (m) Area (m ²) Inf. Area (m ²)
0.000 51.0 0.800 51.0	0.0 0.801 0.0 0.0
Porous Car Park	Manhole: 6, DS/PN: 1.007
Infiltration Coefficient Base (m/hr) 0.00000 Width (m) 7.0
Membrane Percolation (m Max Percolation Safety F Por Invert Leve	m/hr) 1000 Length (m) 25.0 (1/s) 48.6 Slope (1:X) 0.0 actor 2.0 Depression Storage (mm) 5 osity 0.30 Evaporation (mm/day) 3 1 (m) 4.930 Cap Volume Depth (m) 0.300
©1982-2	2017 XP Solutions

Walsh	Assoc	iat	es							Page	9
32 Lai	one S	Stre	et								
Londor	ı									4	\sim
SE1 21	X									Mic	Jun
Date 1	6/09/	201	9 20:1	6		Design	ed by	W.Alexan	der		
File 4	1618-W	IA-1	90912-	MD-001	.MDX	Checke	d by			Uld	mage
Micro	Drain	lage				Networ	k 2017	.1.2			
	Summa	ary	of Cri	tical	Results	s by M	aximum	Level (1	Rank 1) f	or Storm	<u> </u>
		7	1		Simı Simı	ulation	Criter:	ia 	0 . C	D 1 0 0	
		AL	eal Red Hot	Start	(mins)	.000.	MADI	D Factor *	10m³/ha St	orage 2.0	100
			Hot Sta:	rt Level	(mm)	0	11110	In	let Coeffie	ecient 0.8	00
M	anhole	Hea	dloss C	oeff (Gl	lobal) 0	.500 Fl	ow per 1	Person per	Day (l/per	/day) 0.0	00
	Foul S	Sewa	ge per 1	nectare	(l/s) 0	.000					
		Maa	mbor of	Toput 4	Judrogram	be 0 M	umbor o	f Storago	Structuros	1.0	
		ivu	Number (of Onlir	ne Contro	ols 2 N	umber o:	f Time/Are	a Diagrams	0	
		N	umber o	f Offlir	ne Contro	ols 0 N	umber o	f Real Tim	e Controls	0	
			Pain	fall Mo	Synthet	ic Rain	fall De	etails Patio	P 0 426		
			i\a11	Rea	ion Engl	and and	l Wales	Cv (Summer	() 0.750		
				M5-60 (mm)		20.000	Cv (Winter) 0.840		
	P	largi	in for E	lood Ri ا	sk Warni.	ng (mm)	2500	and Inara	mont (Exto	300.0 ndod)	
				AII	DTS	Status	, Z.J SE	CONG INCLE	emenic (Exte	ON	
					DVD	Status				ON	
					Inertia	Status	:			ON	
				Profi	le(s)			Sı	ummer and W	inter	
			Durati	on(s) (mins) 15	б , 30 , 6	50, 120,	240, 360,	480, 960,	1440	
	F	Retur	n Perio	od(s) (y	rears)				1, 30	, 100	
			Climat	e Chang	[e (%)				40, 4	0, 40	
											Water
DN	US/MH		+	Return	Climate	Firs	t (X) hamma	First (Y)	First (Z)	Overflow	Level
PN	Name	2	COLI	Period	change	Surc	narge	FIODA	Overiiow	ACL.	(111)
1.000	1	15	Winter	100	+40%	100/15	Summer				5.069
1.001	2	960	Winter	100	+40%	30/15	Summer				4.976
1.002	3	960	Winter	100	+40%	30/15	Winter				4.975
2.000	3	60	Winter	30	+40%						9.075
1.003	3	960	Winter	100	+40%	30/15	Summer				4.974
1.004	5	960	Winter	100	+40%	1/240	Winter				4.972
1.005	4	960	Winter	100	+40%	1/30	Winter				4.969
1.006	5	960	Winter	100	+40%	1/15	Summer				4.967
3.000	6 11	960	Winter	100	+40% +40%	1/120	Winter				4.963
3.001	8	960	Summer	100	+40%	1/15	Summer				4.366
1.007	6	960	Winter	100	+40%	1/15	Summer				4.964
1.008	7	960	Winter	100	+40%						3.379
1.009	8	960	Winter	100	+40%						3.308
					©1982-2	2017 X	P Solu	tions			
•											

Walsh Associates		Page 10
32 Lafone Street		
London		L'
SE1 2LX		Micco
Date 16/09/2019 20:16	Designed by W.Alexander	
File 4618-WA-190912-MD-001.MDX	Checked by	Diamaye
Micro Drainage	Network 2017.1.2	

Summary of Critical Results by Maximum Level (Rank 1) for Storm

		Surcharged	Flooded			Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m³)	Cap.	(l/s)	(1/s)	Status	Exceeded
1.000	1	0.119	0.000	0.83		21.8	SURCHARGED	
1.001	2	0.699	0.000	0.10		4.7	SURCHARGED	
1.002	3	0.830	0.000	0.06		2.8	SURCHARGED	
2.000	3	0.000	0.000	0.44		2.2	FLOOD RISK*	
2.001	3	0.000	0.000	0.03		2.0	FLOOD RISK*	
1.003	3	0.961	0.000	0.15		5.7	SURCHARGED	
1.004	5	1.055	0.000	0.07		2.6	SURCHARGED	
1.005	4	1.148	0.000	0.08		2.6	SURCHARGED	
1.006	5	1.195	0.000	0.10		3.8	SURCHARGED	
3.000	6	1.074	0.000	0.01		0.2	SURCHARGED	
3.001	11	1.051	0.000	0.07		1.3	SURCHARGED*	
3.002	8	0.651	0.000	0.06		1.1	SURCHARGED*	
1.007	6	1.423	0.000	0.14		1.9	SURCHARGED	
1.008	7	-0.115	0.000	0.13		1.9	OK	
1.009	8	-0.130	0.000	0.04		1.9	OK	

Walsh	Assoc	ciates						Page	1
32 Laf	one S	Street							
Londor	1							4	\sim
SE1 21	XL							Mic	
Date 1	6/09/	2019 20	:17		Designed by	W.Alexan	der		
File 4	1618-W	IA-19091	2-MD-001	.MDX	Checked by			DICI	inage
Micro	Drain	lage			Network 2017	.1.2			
-		-		-	~			1 (5	
<u>1 yea</u>	ır Ret	urn Per	iod Summ	ary of	Critical Res	sults by	Maximum I	Level (Ra	ank 1)
					IOT Storm				
				Sim	ulation Criter	ia			
		Areal R	eduction H	Factor 1	.000 Additio	nal Flow -	% of Total	L Flow 0.0	00
		Hot S	ot Start tart Leve [:]	(mins) l (mm)	0 MAD	D Factor *	10m³/ha St let Coeffie	cient 0 8	00
М	anhole	Headloss	Coeff (Gi	lobal) 0	.500 Flow per 1	Person per	Day (l/per	/day) 0.0	00
	Foul	Sewage pe	r hectare	(l/s) 0	.000				
		Number	of Innut I	Judrogram	obs () Number o	f Storage	Structures	10	
		Numbe	r of Onlin	ne Contro	ols 2 Number o	f Time/Are	a Diagrams	0	
		Number	of Offlin	ne Contro	ols 0 Number o	f Real Tim	e Controls	0	
				Supthot	ic Prinfall Do	taile			
		Ra	ainfall Mo	del	FSR	Ratio	R 0.426		
			Reg	ion Engl	and and Wales	Cv (Summer) 0.750		
			M5-60 (mm)	20.000	Cv (Winter) 0.840		
	Ν	Margin fo	r Flood Ri	.sk Warni	.ng (mm)			300.0	
			An	alysis I	imestep 2.5 Se	cond Incre	ement (Exte	nded)	
				DTS	Status			ON	
				DVE Inertia) Status Status			ON	
				11101 010	btatus			OIN	
			Drofi	10(0)		Chi	mmon and M	inton	
		Dura	ation(s) (mins) 15	5, 30, 60, 120,	240, 360,	480, 960,	1440	
	F	Return Per	riod(s) (y	rears)			1, 30	, 100	
		Clir	mate Chang	le (%)			40, 4	0, 40	
			_ .						Water
PN	US/MH Name	Storm	Return	Climate	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overilow	Level
				onango	y-				()
1.000	1	15 Wint	er 1	+40%	100/15 Summer				4.854
1.001	∠ 3	30 Wint	er 1	+40%	30/15 Winter				4.001
2.000	3	120 Wint	er 1	+40%					9.076
2.001	3	120 Wint	er 1	+40%					9.073
1.003	3	480 Wint	er 1 er 1	+40% ±10%	30/15 Summer				3.975
1.004	4	960 Wint	er 1	+40%	1/30 Winter				3.974
1.006	5	960 Wint	er 1	+40%	1/15 Summer				3.974
3.000	6	480 Wint	er 1	+40%	1/120 Winter				3.966
3.001	11 8	480 Wint	er 1 er 1	+40% +40%	1/60 Summer 1/15 Summer				3.966 3.966
1.007	6	480 Wint	er 1	+40%	1/15 Summer				3.973
1.008	7	480 Wint	er 1	+40%					3.372
1.009	8	480 Wint	er 1	+40%					3.304
				©1982-	2017 XP Solu	tions			

Walsh Associates		Page 2
32 Lafone Street		
London		L'
SE1 2LX		Micco
Date 16/09/2019 20:17	Designed by W.Alexander	
File 4618-WA-190912-MD-001.MDX	Checked by	Dialitage
Micro Drainage	Network 2017.1.2	
1 year Return Period Summary of	Critical Results by Maximum Leve for Storm	el (Rank 1)

		Surcharged	Flooded			Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
1.000	1	-0.096	0.000	0.28		7.3	OK	
1.001	2	-0.111	0.000	0.51		22.8	OK	
1.002	3	-0.144	0.000	0.28		12.7	OK	
2.000	3	-0.032	0.000	0.23		1.2	FLOOD RISK*	
2.001	3	-0.002	0.000	0.01		0.8	FLOOD RISK*	
1.003	3	-0.038	0.000	0.15		5.5	OK	
1.004	5	0.056	0.000	0.09		3.2	SURCHARGED	
1.005	4	0.153	0.000	0.08		2.4	SURCHARGED	
1.006	5	0.202	0.000	0.08		3.0	SURCHARGED	
3.000	6	0.077	0.000	0.00		0.0	SURCHARGED	
3.001	11	0.164	0.000	0.02		0.3	SURCHARGED*	
3.002	8	0.251	0.000	0.05		0.9	SURCHARGED*	
1.007	6	0.432	0.000	0.09		1.2	SURCHARGED	
1.008	7	-0.122	0.000	0.08		1.2	OK	
1.009	8	-0.134	0.000	0.03		1.2	OK	

Walsh	Asso	ciates							Page	÷ 3
32 Lai	fone S	Street								
Londor	l								4	~
SE1 21	X								Mir	
Date 1	L6/09/	2019 20	:17		Designed	by I	W.Alexan	der		
File 4	1618-V	VA-19091	2-MD-001	.MDX	Checked b	by			DIC	inaye
Micro	Drair	nage			Network 2	2017	.1.2			
30 170	ar Po	turn Dei	ciad Summ	nary of	Critical	1 Pos	ulte by	Maximum	Iovol (E	Pank 1)
<u>30 ye</u>	ai ne			liary or	for Stor	rm	SUICS DY	Maximum	пелет (1	
					101 0001					
		_		Sim	ulation Cr	iteri	a			
		Areal F	Reduction H	Factor 1	.000 Add	lition MADD	al Flow -	% of Total	L Flow 0.0	000
		Hot S	Start Level	(miiis) L (mm)	0	MADD	In:	let Coeffie	ecient 0.8	800
M	anhole	Headloss	G Coeff (G	lobal) O	.500 Flow	per P	erson per	Day (l/per	/day) 0.0	000
	Foul	Sewage pe	er hectare	(l/s) 0	.000					
		Number	of Input H	Ivdrogram	ohs (Numb	per of	Storage :	Structures	10	
		Number	er of Onlin	ne Contro	ols 2 Numb	per of	Time/Area	a Diagrams	0	
		Number	of Offlin	ne Contro	ols 0 Numb	per of	Real Time	e Controls	0	
				Crupthot	ia Doinfol					
		R	ainfall Mo	del	.ic Kainiai	FSR	Ratio	R 0.426		
			Reg	ion Engl	and and Wa	ales (Cv (Summer) 0.750		
			M5-60 (mm)	20.	.000 0	Cv (Winter) 0.840		
	ĩ	Margin fo	r Flood Ri	sk Warni	ng (mm)				300.0	
	-	101 9111 10	An	alysis T	'imestep 2.	.5 Sec	cond Incre	ment (Exte	nded)	
				DTS	Status				ON	
				DVD	Status				ON	
				INELUIA	SLALUS				OIN	
			Drofi	lo(s)			Cit	mmor and W	intor	
		Dur	ation(s) (mins) 15	5, 30, 60,	120,	240, 360,	480, 960,	1440	
	Ι	Return Pe	riod(s) (y	rears)				1, 30	, 100	
		Cli	mate Chang	le (%)				40, 4	0, 40	
										Watar
	US/MH		Return	Climate	First ((X)	First (Y)	First (Z)	Overflow	Level
PN	Name	Storm	Period	Change	Surchar	ge	Flood	Overflow	Act.	(m)
1.000	1	15 Wint	er 30	+40%	100/15 Su	mmer				4.891
1.001	2	15 Summ	er 30	+40%	30/15 Su	ummer				4.424
2 000	3 3	30 Wint	er 30	+40% +40%	30/15 Wi	nter				4.405
2.001	3	60 Wint	er 30	+40%						9.075
1.003	3	960 Wint	er 30	+40%	30/15 Su	ummer				4.405
1.004	5	960 Wint	er 30	+40%	1/240 Wi	nter				4.403
1.005	4	960 Wint	er 30	+40% ±109	1/30 Wi 1/15 cm	nter				4.406
3.000	6	960 Wint	er 30	+40%	1/120 Wi	.nter				4.394
3.001	11	960 Wint	er 30	+40%	1/60 Su	ummer				4.394
3.002	8	960 Wint	er 30	+40%	1/15 Su	mmer				4.366
1 002	6 7	960 Wint	er 30	+40% +40%	1/15 Su	ummer				4.407 3 376
1.009	8	960 Wint	er 30	+40%						3.306
				©1982-3	2017 XP 9	Solut	ions			
L						u (

Walsh Associates		Page 4
32 Lafone Street		
London		4
SE1 2LX		Micco
Date 16/09/2019 20:17	Designed by W.Alexander	
File 4618-WA-190912-MD-001.MDX	Checked by	Diamacje
Micro Drainage	Network 2017.1.2	

30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

		Surcharged	Flooded			Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(l/s)	Status	Exceeded
1.000	1	-0.059	0.000	0.68		17.9	OK	
1.001	2	0.147	0.000	1.47		66.0	SURCHARGED	
1.002	3	0.260	0.000	0.06		2.8	SURCHARGED	
2.000	3	0.000	0.000	0.44		2.2	FLOOD RISK*	
2.001	3	0.000	0.000	0.03		2.0	FLOOD RISK*	
1.003	3	0.392	0.000	0.14		5.3	SURCHARGED	
1.004	5	0.486	0.000	0.06		2.2	SURCHARGED	
1.005	4	0.585	0.000	0.08		2.6	SURCHARGED	
1.006	5	0.635	0.000	0.09		3.4	SURCHARGED	
3.000	6	0.505	0.000	0.00		0.0	SURCHARGED	
3.001	11	0.592	0.000	0.03		0.5	SURCHARGED*	
3.002	8	0.651	0.000	0.05		0.8	SURCHARGED*	
1.007	6	0.866	0.000	0.11		1.5	SURCHARGED	
1.008	7	-0.118	0.000	0.10		1.5	OK	
1.009	8	-0.132	0.000	0.03		1.5	OK	

Walsh	Assoc	ciat	es							Page	e 5
32 Laf	one S	Stre	et								
Londor	1									4	~
SE1 21	ЪХ									Mir	
Date 1	6/09/	201	9 20:1	7		Designe	d by	W.Alexan	der	Dca	סחבחו
File 4	1618-V	VA-1	90912-	MD-001	.MDX	Checked	by			סום	iniage
Micro	Drair	nage				Network	2017	.1.2			
<u>100 </u>	year 1	Retu	rn Per	iod Su	ummary (<u>1</u>	of Crit:) for S	ical B Storm	Results k	oy Maximu	m Level	(Rank
M	anhole Foul	Are H Heac Sewag	eal Redu Hot Hot Stai Moss Co ge per 1	uction F Start (rt Level peff (Gl hectare	Simu Cactor 1 (mins) (mm) Lobal) 0 (1/s) 0	ulation 0 .000 Ac 0 .500 Flow .000	Criteri dditior MADE v per F	<u>a</u> hal Flow -) Factor * In: Person per	% of Total 10m³/ha St let Coeffic Day (1/per	L Flow 0. corage 2. ecient 0. c/day) 0.	000 000 800 000
		Nun M Nu	nber of Jumber o umber o:	Input H of Onlin f Offlir	Hydrograp ne Contro ne Contro	ohs O Num ols 2 Num ols O Num	nber of nber of nber of	Storage S Time/Area Real Time	Structures a Diagrams e Controls	10 0 0	
			Rain	fall Mo Reg M5-60 (;	<u>Synthet</u> del ion Engl mm)	ic Rainf	all De FSR Wales 0.000	<u>tails</u> Ratio Cv (Summer Cv (Winter	R 0.426) 0.750) 0.840		
	P	Margi	n for F	'lood Ri An	sk Warni alysis T DTS DVD Inertia	ng (mm) imestep Status Status Status	2.5 Se	cond Incre	ment (Exte	300.0 nded) ON ON ON	
	Ŧ	Retur	Durati n Peric Climat	Profi .on(s) (od(s) (y ce Chang	le(s) mins) 15 ears) e (%)	5, 30, 60	, 120,	Su 240, 360,	mmer and W 480, 960, 1, 30 40, 4	inter 1440 , 100 0, 40	
PN	US/MH Name	S	torm	Return Period	Climate Change	First Surcha	(X) arge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water 7 Level (m)
1 000	-	1 -	Mi mt -	100	- 400	100/15	-				E OCO
1.000	⊥ 2	15 960	winter Winter	100	+40% +40%	30/15 9	bummer Summer				5.069 4.976
1.002	3	960	Winter	100	+40%	30/15 V	Vinter				4.975
2.000	3	60	Winter	100	+40%						9.108
2.001	3	60	Winter	100	+40%						9.075
1.003	3	960	Winter	100	+40%	30/15 \$	Summer				4.974
1 004	5	960 960	Winter	100	+40%	1/240 V 1/30 V	Vinter				4.972
1.006	5	960	Winter	100	+40%	1/15 \$	Summer				4.967
3.000	6	960	Winter	100	+40%	1/120 V	Vinter				4.963
3.001	11	960	Winter	100	+40%	1/60 \$	Summer				4.853
3.002	8	120	Winter	100	+40%	1/15 5	Summer				4.366
1 008	6 7	960 960	Winter	100	+40%	1/15 8	Summer				4.964
1.009	8	960	Winter	100	+40%						3.308
					©1982-2	2017 XP	Solut	tions			

Walsh Associates		Page 6
32 Lafone Street		
London		4
SE1 2LX		Micco
Date 16/09/2019 20:17	Designed by W.Alexander	
File 4618-WA-190912-MD-001.MDX	Checked by	Diamaye
Micro Drainage	Network 2017.1.2	

100 year Return Period Summary of Critical Results by Maximum Level (Rank <u>1) for Storm</u>

		Surcharged	Flooded			Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(l/s)	Status	Exceeded
1.000	1	0.119	0.000	0.83		21.8	SURCHARGED	
1.001	2	0.699	0.000	0.10		4.7	SURCHARGED	
1.002	3	0.830	0.000	0.06		2.8	SURCHARGED	
2.000	3	0.000	0.000	0.57		2.9	FLOOD RISK*	
2.001	3	0.000	0.000	0.04		2.6	FLOOD RISK*	
1.003	3	0.961	0.000	0.15		5.7	SURCHARGED	
1.004	5	1.055	0.000	0.07		2.6	SURCHARGED	
1.005	4	1.148	0.000	0.08		2.6	SURCHARGED	
1.006	5	1.195	0.000	0.10		3.8	SURCHARGED	
3.000	6	1.074	0.000	0.01		0.2	SURCHARGED	
3.001	11	1.051	0.000	0.07		1.3	SURCHARGED*	
3.002	8	0.651	0.000	0.02		0.4	SURCHARGED*	
1.007	6	1.423	0.000	0.14		1.9	SURCHARGED	
1.008	7	-0.115	0.000	0.13		1.9	OK	
1.009	8	-0.130	0.000	0.04		1.9	OK	

Walsh	Assoc	ciates]	Page	1
32 Laf	one S	Street								ſ		
Londor	1										L	-
SE1 21	XL										Mico	
Date 1	6/09/	2019 2	20:1	8		Designed	by W	.Alexand	der		Dcai	מחבת
File 4	1618-W	IA-1909	912-	MD-001	.MDX	Checked b	У				וטוט	nage
Micro	Drair	nage				Network 2	017.	1.2				
1				1 6	c	a	-			0 I C	-	
<u>l yea</u>	ar Rei	turn P	eric	d Summ	ary of	Critical	Resi	ults by	Maxımum	Outi	Low	Rank
					<u>_</u>) IOI SUC	<u>r III</u>					
					Sim	ulation Cri	teria	<u>L</u>				
		Areal	Redi	uction F	actor 1	.000 Addi	tiona	al Flow -	% of Total	l Flov	v 0.00	00
		Hot	Stai	rt Level	(miins) (mm)	0	MADD	Ini	let Coeffie	ecient	2.00 2 0.80)0
M	anhole	Headlo	ss Co	oeff (Gl	Lobal) 0	.500 Flow p	er Pe	erson per	Day (l/per	r/day)	0.00	0
	Foul	Sewage]	per 1	nectare	(l/s) 0	.000						
		Numbe	r of	Input H	lydrogram	ohs 0 Numbe	r of	Storage S	Structures	10		
		Numl	ber d	of Onlir	ne Contro	ols 2 Numbe	r of	Time/Area	a Diagrams	0		
		Numbe	er of	f Offlir	ne Contro	ols 0 Numbe	r of	Real Time	e Controls	0		
					Svnthet	ic Rainfall	Deta	ails				
			Rain	fall Mo	del	E	SR	Ratio	R 0.426			
				Reg	ion Engl	and and Wal	les C	v (Summer) 0.750			
				M3-60 (I		20.0	100 C	v (winter) 0.840			
	Ν	Margin f	for F	'lood Ri	sk Warni	ng (mm)				300.0		
				An	alysis T	imestep 2.	5 Sec	ond Incre	ment (Exte	nded)		
					DIS	Status Status				ON		
					Inertia	Status				ON		
				Profi	le(s)			Su	mmer and W	linter		
		Du	ırati	.on(s) (mins) 15	, 30, 60, 3	L20,	240, 360,	480, 960,	1440		
	ł	Return E Cl	Peric	e Chang	ears) e (%)				40, 4	0. 40		
				onang	0 (0)				107 1	, 10		
												Water
	US/MH			Return	Climate	First (X) E	first (Y)	First (Z)	Over	flow	Level
PN	Name	Stor	m	Period	Change	Surcharg	e	Flood	Overflow	Ac	t.	(m)
1.000	1	15 Wir	nter	1	+40%	100/15 Sum	mer					4.854
1.001	2	15 Wir	nter	1	+40%	30/15 Sum	mer					4.166
1.002	3	30 Win	nter	1	+40%	30/15 Win	ter					4.001
2.000	3	120 Wir	nter	1	+40%							9.064 9.073
1.003	3	30 Wir	nter	1	+40%	30/15 Sum	mer					3.917
1.004	5	15 Wir	nter	1	+40%	1/240 Win	ter					3.804
1.005	4	15 Wir 30 Wir	nter	1	+40% +40%	1/30 Win 1/15 Sum	ter mer					3.811 3.834
3.000	6	960 Wir	nter	1	+40%	1/120 Win	ter					3.965
3.001	11	960 Wir	nter	1	+40%	1/60 Sum	mer					3.965
3.002	8 6	480 Wir 480 Wir	nter	1	+40% +40%	1/15 Sum 1/15 Sum	mer mer					3.966
1.008	7	480 Win	nter	1	+40%	1/15 500	mer					3.372
1.009	8	480 Wir	nter	1	+40%							3.304
					©1982-2	2017 XP S	olut	ions				
				-		-						

Walsh Associates		Page 2
32 Lafone Street		
London		4
SE1 2LX		Micco
Date 16/09/2019 20:18	Designed by W.Alexander	
File 4618-WA-190912-MD-001.MDX	Checked by	Dialitage
Micro Drainage	Network 2017.1.2	

<u>1 year Return Period Summary of Critical Results by Maximum Outflow (Rank</u> <u>1) for Storm</u>

		Surcharged	Flooded			Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(l/s)	Status	Exceeded
1 000	1	0 006	0 000	0 20		7 2	OF	
1.000	Ţ	-0.096	0.000	0.20		1.5	UK .	
1.001	2	-0.111	0.000	0.51		22.8	OK	
1.002	3	-0.144	0.000	0.28		12.7	OK	
2.000	3	-0.044	0.000	0.25		1.3	FLOOD RISK*	
2.001	3	-0.002	0.000	0.01		0.8	FLOOD RISK*	
1.003	3	-0.096	0.000	0.62		22.9	OK	
1.004	5	-0.113	0.000	0.22		8.0	OK	
1.005	4	-0.010	0.000	0.26		8.1	OK	
1.006	5	0.062	0.000	0.23		8.9	SURCHARGED	
3.000	6	0.076	0.000	0.00		0.0	SURCHARGED	
3.001	11	0.163	0.000	0.02		0.3	SURCHARGED*	
3.002	8	0.251	0.000	0.05		0.9	SURCHARGED*	
1.007	6	0.432	0.000	0.09		1.2	SURCHARGED	
1.008	7	-0.122	0.000	0.08		1.2	OK	
1.009	8	-0.134	0.000	0.03		1.2	OK	

Walsh	Asso	ciate	es							Page	3
32 Lai	Eone	Stree	ət								
Londor	l									4	<u> </u>
SE1 21	X									Mic	
Date 2	L6/09	/2019	9 20:18	8	Γ	esigne	ed by I	W.Alexand	ler		
File 4	1618-	WA-19	90912-1	MD-001.	MDX C	Checked	d by			Didi	naye
Micro	Drai	nage			Ν	letwork	x 2017	.1.2			
<u>30 y</u> e	ear Re	eturr	<u>ı Peric</u>	od Summ	nary of <u>1</u> <u>1</u>	Critic) for s	<u>cal Re</u> Storm Criteri	<u>sults by</u> <u>a</u>	Maximum	Outflow	(Rank
М	anhole Foul	Are Heac Sewag	al Redu Hot Hot Star loss Co ge per h	Start (Start (Level oeff (Gl nectare	actor 1. mins) (mm) obal) 0. (1/s) 0.	000 A 0 500 Flo 000	ddition MADD w per P	al Flow - Factor * Inl erson per	% of Total 10m³/ha St et Coeffie Day (l/per	Flow 0.0 orage 2.0 cient 0.8 /day) 0.0	00 00 00 00
		Nun M Nu	lber of Number c Imber of	Input H of Onlin Offlin	ydrograp e Contro e Contro Synthet	hs 0 Nu ls 2 Nu ls 0 Nu ic Rainf	mber of mber of mber of Tall Det	Storage S Time/Area Real Time	tructures Diagrams Controls	10 0 0	
			Rain:	fall Mod Regi M5-60 (n	del .on Engla .m)	and and 2	FSR Wales (20.000 (Ratio I Cv (Summer) Cv (Winter)	R 0.426) 0.750) 0.840		
		Margi	n for F	lood Ris Ana	sk Warnin alysis Ti DTS DVD	ng (mm) imestep Status Status	2.5 Sec	cond Increm	nent (Exte	300.0 nded) ON ON	
					INELUIA	SLALUS				ON	
		Retur	Durati n Perio Climat	Profil on(s) (m d(s) (ye e Change	le(s) nins) 15, ears) e (%)	, 30, 60), 120,	Sur 240, 360,	nmer and W. 480, 960, 1, 30, 40, 4	inter 1440 , 100 0, 40	
	US/MH			Return	Climate	First	: (X)	First (Y)	First (Z)	Overflow	Water Level
PN	Name	St	torm	Period	Change	Surch	narge	Flood	Overflow	Act.	(m)
1.000 1.001 1.002	1 2 3	15 <mark>15</mark> 15	Winter Winter Summer	30 30 30	+40% +40% +40%	100/15 30/15 30/15	Summer <mark>Summer</mark> Winter				4.891 4.424 4.145
2.000	3	30 120	Winter	30	+40% ±10%						9.108 9.075
1.003	3	120 15	Winter	30 30	+40% +40%	30/15	Summer				9.075 4.138
1.004	5	30	Winter	30	+40%	1/240	Winter				4.123
1.005	4	30	Winter	30	+40%	1/30	Winter				4.099
1.006	5	30	Winter	30	+40%	1/15	Summer				4.084
3.000	6 11	1440 960	Winter	30	+40% ±10%	1/120	Winter				4.371 4 301
3.001	11	960 960	Summer	30	+408 +40%	1/15	Summer				4.394 4.296
1.007	6	960	Winter	30	+40%	1/15	Summer				4.407
1.008	7	960	Winter	30	+40%						3.376
			wincer		©1982-2	017 XF	' Solut	ions			5.500

Walsh Associates		Page 4
32 Lafone Street		
London		4
SE1 2LX		Micco
Date 16/09/2019 20:18	Designed by W.Alexander	
File 4618-WA-190912-MD-001.MDX	Checked by	Diamaye
Micro Drainage	Network 2017.1.2	

30 year Return Period Summary of Critical Results by Maximum Outflow (Rank 1) for Storm

		Surcharged	Flooded			Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(l/s)	Status	Exceeded
		0.050						
1.000	1	-0.059	0.000	0.68		17.9	OK	
1.001	2	0.147	0.000	1.47		66.0	SURCHARGED	
1.002	3	0.000	0.000	0.64		28.8	OK	
2.000	3	0.000	0.000	0.44		2.2	FLOOD RISK*	
2.001	3	0.000	0.000	0.03		2.1	FLOOD RISK*	
1.003	3	0.125	0.000	1.39		51.7	SURCHARGED	
1.004	5	0.206	0.000	0.44		16.5	SURCHARGED	
1.005	4	0.278	0.000	0.53		16.6	SURCHARGED	
1.006	5	0.312	0.000	0.44		17.0	SURCHARGED	
3.000	6	0.482	0.000	0.00		0.0	SURCHARGED	
3.001	11	0.592	0.000	0.03		0.5	SURCHARGED*	
3.002	8	0.581	0.000	0.06		1.1	SURCHARGED*	
1.007	6	0.866	0.000	0.11		1.5	SURCHARGED	
1.008	7	-0.118	0.000	0.10		1.5	OK	
1.009	8	-0.132	0.000	0.03		1.5	OK	

Walsh	Assoc	ciates						Page	5
32 Lai	fone S	Street						5	
Londor	n							2	\sim
SE1 21	ĽΧ							Mic	
Date 2	16/09/	2019 20:	18		Designed by	W.Alexan	der		
File 4	4618-1	IA-190912	-MD-001	.MDX	Checked by			DIG	inage
Micro	Micro Drainage Network 2017.1.2								
1.0.0								0 1 51 1	
<u>100 y</u>	ear R	eturn Per	riod Sun	nmary o:	t Critical .	Results b	y Maxımum	Outilow	(Rank
				<u>_</u>) IOI SLOIM	<u></u>			
				Sim	ulation Crite	ria			
		Areal Re	duction H	Factor 1	.000 Additi	onal Flow -	% of Total	L Flow 0.0	00
		Hot St	t Start art Leve	(mins) l (mm)	0 MA	DD Factor *	10m³/ha St	cient 0.8	00
м	anhole	Headloss	Coeff (Gi	lobal) 0	.500 Flow per	Person per	Day (1/per	/day) 0.0	00
	Foul	Sewage per	hectare	(l/s) 0	.000	-		<u> </u>	
		Mumber	E Transit I		he O Number	ef Champers	Churchteres	1.0	
		Number o Number	of Onlin	ne Contro	ons U Number ols 2 Number	of Time/Are	a Diagrams	0	
		Number	of Offlin	ne Contro	ols 0 Number	of Real Tim	e Controls	0	
		Rai	nfall Mo	Synthet	ic Rainfall D	<u>etails</u> Ratio	R 0 426		
		Ital	Reg	ion Engl	and and Wales	Cv (Summer	c) 0.750		
			M5-60 (mm)	20.000	Cv (Winter	c) 0.840		
	N	largin for	Elood Di	ak Marri	n.g. (mm)			200 0	
	ľ	largin ior	F1000 RI An	alvsis T	imestep 2.5 S	econd Incre	ement (Exte	nded)	
				DTS	Status			ON	
				DVD	Status			ON	
				Inertia	Status			ON	
			Profi	le(s)		Si	ummer and W	inter	
	Ţ	Durat Return Per	10n(s) (mins) 15 Pars)	, 30, 60, 120	, 240, 360,	480, 960,	1440	
	1	Clima	ate Chang	ears)			40, 4	0, 40	
									Water
	US/MH		Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Level
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)
1.000	1	15 Summe:	r 100	+40%	100/15 Summe	r			5.067
1.001	2	15 Summe:	r 100	+40%	30/15 Summe	r			4.596
1.002	3	15 Summe:	r 100	+40%	30/15 Winte	r			4.238
2.000	3	120 Winte	r 100	+40%					9.075
1.003	3	15 Winte	r 100	+40%	30/15 Summe	r			4.252
1.004	5	15 Winte	r 100	+40%	1/240 Winte	r			4.141
1.005	4	30 Winte:	r 100	+40%	1/30 Winte:	r			4.227
3.000	6	960 Winte	r 100	+40%	1/120 Winte	r			4.963
3.001	11	360 Summe	r 100	+40%	1/60 Summe	r			4.458
3.002	8	960 Winte	r 100	+40%	1/15 Summe	r			4.366
1.007	67	960 Winter	r 100	+40% ±10%	1/15 Summe:	r			4.964 3 370
1.009	8	960 Winte	r 100	+40%					3.308
				@1982.	2017 VD CAL	utions			
	STACT STATE STATES								

Walsh Associates		Page 6
32 Lafone Street		
London		L'
SE1 2LX		Micco
Date 16/09/2019 20:18	Designed by W.Alexander	
File 4618-WA-190912-MD-001.MDX	Checked by	Diamaye
Micro Drainage	Network 2017.1.2	

100 year Return Period Summary of Critical Results by Maximum Outflow (Rank 1) for Storm

		Surcharged	Flooded			Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(l/s)	Status	Exceeded
1.000	1	0.117	0.000	0.84		22.0	SURCHARGED	
1.001	2	0.319	0.000	1.84		82.6	SURCHARGED	
1.002	3	0.093	0.000	0.62		27.7	SURCHARGED	
2.000	3	0.000	0.000	0.61		3.1	FLOOD RISK*	
2.001	3	0.000	0.000	0.04		2.7	FLOOD RISK*	
1.003	3	0.239	0.000	1.56		57.8	SURCHARGED	
1.004	5	0.224	0.000	0.49		18.2	SURCHARGED	
1.005	4	0.406	0.000	0.58		18.1	SURCHARGED	
1.006	5	0.439	0.000	0.49		19.2	SURCHARGED	
3.000	6	1.074	0.000	0.01		0.2	SURCHARGED	
3.001	11	0.656	0.000	0.08		1.4	SURCHARGED*	
3.002	8	0.651	0.000	0.07		1.3	SURCHARGED*	
1.007	6	1.423	0.000	0.14		1.9	SURCHARGED	
1.008	7	-0.115	0.000	0.13		1.9	OK	
1.009	8	-0.130	0.000	0.04		1.9	OK	

Design Notes 11 and 19 Osiers Road Ref: P:\Projects\4618\Documents\Reports\FRA\GLA Response\4618-Design Note-WA-190916-Rev1.docx Date: 16 September 2019

Appendix E – Proposed Schematic Drawings

Registered Office: 32 Lafone Street, London, SE1 2LX

EXFWMH EXISTING FOUL WATER MANHOLES SWMH SURFACE WATER MANHOLES CWMH COMBINED WATER MANHOLES CATCHPIT MANHOLE 300mm SUMP BELOW LOWEST INCOMING INVERT LEVEL	Notes ALL DIMENSIONS ARE IN MILLIMETRES AND LEVELS IN METRES. THIS DRAWING TO BE READ IN CONJUNCTION WITH RELEVANT ARCHITECT'S AND ENGINEER'S DRAWINGS AND SPECIFICATIONS. THIS DRAWING HAS BEEN PRODUCED ELECTRONICALLY AND MAY HAVE BEEN PHOTO REDUCED OR ENLARGED WHEN COPIED. HENCE, DO NOT RELY ON ANY SCALES QUOTED. WORK ONLY TO FIGURED DIMENSIONS (DO NOT SCALE). ALL DIMENSIONS TO BE CHECKED ON SITE. ANY ERRORS OR OMISSIONS TO BE REPORTED TO THE ENGINEER IMMEDIATELY.
 FLOW ARROW HYDROBRAKE. REFER TO DRAWING 4618-WAL-ZZ-SW-DR-D-3203 FOR DETAILS SITE BOUNDARY 	
BELOW GROUND ATTENUATION TANK (95% VOIDS). REFER TO DRAWING 4618–WAL–ZZ–SW–DR–D–3203 FOR DETAILS PROPOSED BLUE ROOF	
PROPOSED GREEN ROOF PROPOSED BROWN ROOF SOFT LANDSCAPING AREAS	C.D.M. SIGNIFICANT RISKS AND HAZARDS:
TANKED PERMEABLE PAVING. REFER TO DRAWING 4618–WAL–ZZ–SW–DR–D–3203 FOR DETAILS	KEY DESIGN DECISIONS TO REDUCE OR ELIMINATE HAZARDS:
ATTENUATION TANKS TO HAVE A MINIMUM OF 1.2m TH TREE PLANTING LOCATED ABOVE TANKS.	
	P01 16.09.19 WA FIRST ISSUE Rev. Date By Details Of Revision Client HOLLYBROOK HOMES
	Project OSIERS ROAD Title INDICATIVE SUDS STRATEGY
B=M4L-ZZ-SUP.DR-D-3300.0wg 16/09/19 18:58	Image: Structural and Civil Engineers Structural and Civil Engineers 32 Lafone Street London SE1 2LX t: +44(0)20 7089 6800 e: london@walsh.co.uk Walsh.co.uk walsh.co.uk Status Drawn EB A1 Scales 1:250 Date 11.09.19 Eng. WA Chk. KM
10 15 20 25 1:250	WA Ref. 4618 Suitblty.
	·

Notes

1. ALL DIMENSIONS ARE IN MILLIMETRES AND LEVELS IN METRES. 2. THIS DRAWING TO BE READ IN CONJUNCTION WITH RELEVANT ARCHITECT'S AND ENGINEER'S DRAWINGS AND SPECIFICATIONS.

3. THIS DRAWING HAS BEEN PRODUCED ELECTRONICALLY AND MAY HAVE BEEN PHOTO REDUCED OR ENLARGED WHEN COPIED. HENCE, DO NOT RELY ON ANY SCALES QUOTED. WORK ONLY TO FIGURED DIMENSIONS (DO NOT SCALE). ALL DIMENSIONS TO BE CHECKED ON SITE. ANY ERRORS OR OMISSIONS TO BE REPORTED TO THE ENGINEER IMMEDIATELY.

C.D.M. SIGNIFICANT RISKS AND HAZARDS:

KEY DESIGN DECISIONS TO REDUCE OR ELIMINATE HAZARDS:

Contact

Walsh Structural and Civil Engineers 32 Lafone Street London SE1 2LX

+44 (0)20 7089 6800 <u>london@walsh.co.uk</u>

walsh.co.uk

