

Revision	Issued for	Date	Author	Checked by
0	Planning	$22 / 03 / 2019$	AC / JC / KC / PP	CC

Confidentiality and Third-Party Responsibility
This document is confidential to the party to whom it is addressed and their professional advisers for the specific purpose to which it refers. No responsibility is inferred to any third parties, and neither the whole, nor any part, nor reference thereto may be published or disclosed.
own reports.

Executive Summary.
Introduction
Software and Modelling Information $\ldots .$.
Development Description 3
Sustainability Drivers $\ldots .4$
Establishing CO_{2} Emissions 7
Demand Reduction (Be Lean)$\ldots . .$.
Passive Design Measures. $\ldots . . .$.
Active Design Measures8
Demand Side Response 8
'Be Lean' Results 9
Energy Demand. 9
Overheating Risk Analysis 9
Part L Criterion 3 of the Building Regulations \ldots
Domestic Overheating Checklist 10
Domestic and Non-domestic Overheating Modelling Assumptions11
Domestic Overheating Results for DSY1 $\ldots11$
Non-domestic Overheating Results for DSY1$\cdots . .$.
513 Active Cooling12
$6 \quad$ Heating Infrastructure (Be Clean) 13
Area-Wide Heat Network 13
Site-Wide Heat Network13
6.2 Site-Wide Heat Netwo $\ldots . . .13$
Air Quality...13
Future Proofing 14
Renewable Energy (Be Green) 15
Low and Zero Carbon Technologies Study15
'Be Green' Result 15
Carbon Offsetting 16
Offset Payment. 16
Monitoring16
Conclusio 16
Appendices $\ldots .17$
BRUKLs 17
SAP Compliance Calculations 28
Overheating Results
..
.30
Area-weighted Average Actual and Notional Cooling Demands for Non-domestic Buildings 38
Communication with Local Borough and/or Local Heat Network Operators 45
Energy Centre... 47
Preliminary Demand Profiles \& CHP Assessment48
11.8 Unviable Low and Zero Carbon technologies 52
11.9 GLA Carbon Emissions Reporting Spreadsheet (v1.1)

1 Executive Summary
This Energy Statement has been prepared by chapmanbdsp to support the planning application for the Pentavia, Mill Hill development in Barnet

The energy strategy for this mixed-use development focuses on providing high quality dwellings and nondomestic spaces that are comfortable throughout the year, but with minimal energy consumption and carbon emissions. The design approach for Pentavia, Mill Hill follows the GLA energy hierarchy i.e. being 'lean, clean and green' to achieve the following targets:

- Reduce regulated CO_{2} emissions below those of a development compliant with Part L 2013 of the Building Regulations through energy efficiency measures alone (be lean);
- An on-site reduction of 35% beyond Part L 2013 for non-residential development; and,
- Zero carbon target for residential developments, with at least a 35% on-site reduction beyond Part L 2013 and proposals for making up the shortfall to achieve zero carbon, where required.

As Pentavia, Mill Hill is comprised of both domestic and non-domestic uses, this report demonstrates that this target has been achieved for domestic and non-domestic uses separately. These targets are in line with the GLA's Sustainable Design and Construction SPG, Barnet's SPD on Sustainable Design and Construction Barnet's Development Plan Document as well as the London Plan (March 2016) and the London Borough of Barnet Core Strategy

The design approach targets demand reduction measures first, giving priority to optimization of building fabric to reduce the need for heating, cooling, and artificial lighting. The objective was to have buildings as energy efficient (i.e. 'lean') as possible without relying on overly complicated systems or technologies to deliver low carbon performance. The aim was to achieve a low-energy building without relying on carbon offsetting technologies only.

The design of the buildings, together with the MEP systems, and sustainability features have been optimized to minimize the energy demand. High level of envelope insulation and optimized glazing-to-solid ratios are applied to the façade design to ensure heating demand is minimized and in response to the site's surroundings; whilst window and door openings are provided for passive ventilation to reduce the need for cooling, whereve possible without compromising air quality. Efficient low energy lighting (with LED lighting where appropriate) and mechanical ventilation with high rate of heat recovery are implemented throughout to further reduce energy demand. Demand side response is also facilitated via smart meters and other technologies for contro and diagnostics where applicable. These components also support the operational energy monitoring requirements.

In the absence of existing district energy networks in close proximity to the site, the energy centre also allows for a connection to a future district heating scheme by providing a space for the necessary equipment in the communal plantroom and a single capped off pipework connection point, should one become available.

The development will include a low carbon communal heating network serving all domestic and non-domestic areas. A single energy centre will include communal gas-fired CHP and gas fired boilers for space heating and domestic hot water. A PV array located on unshaded roofs will further reduce the scheme's electricity demand.

This strategy provides the following advantages:

- Future connection to area wide district heating scheme for energy sharing and network expansion; and
- Future installation of advanced technology heat generators towards achieving zero carbon

With this design approach, the development achieves a 41.8% reduction in carbon emission against Part L 2013 Under the revised GLA guidance, we have also calculated the carbon emissions using SAP 10 carbon factors. hese results are presented in section 11.9.

Domestic energy hierarchy

	Carbon dioxide emissions		
	(Tonnes CO_{2} per annum)		
	Regulated	Unregulated	Total
Part L 2013 compliant building	1014.4	1121.9	2136.3
Be Lean	978.1	1121.9	2100.0
Be Clean	615.2	1121.9	1737.1
Be Green	531.3	1121.9	1653.2

	Carbon dioxide savings			
				(Tonnes CO_{2} per annum)
	Regulated	Total	Regulated	Total
Be Lean	Savings from demand reduction	36.3	36.3	3.6%
Be Clean	Savings from CHP	362.9	362.9	35.8%
Be Green	Savings from renewable energy	83.9	83.9	8.3%
Total cumulative savings	483.1	483.1	47.6%	22.6%

Carbon shortfall	531.3
Cash-in-lieu contribution	$£ 956,319$
Table 1.2 - Regulated CO_{2} savings from each stage of the energy hierarchy for domestic buildings	

	Carbon dioxide emissions		
	(Tonnes CO_{2} per annum)		
	Regulated	Unregulated	Total
Part L 2013 compliant building	301.1	122.1	423.2
Be Lean	260.5	122.1	382.6
Be Clean	234.2	122.1	356.3
Be Green	234.2	122.1	356.3

		Carbon dioxide savings				
		(Tonnes CO_{2} per annum)		$\%$		
	Regulated	Total	Regulated	Total		
Be Lean	Savings from demand reduction	40.6	40.6	13.5%		
Be Clean	Savings from CHP	26.3	26.3	8.7%		
Be Green	Savings from renewable energy	0.0	0.0	0.0%		
Total cumulative savings	66.9	66.9	22.2%	15.8%		

Carbon shortfall	38.5
Cash-in-lieu contribution	$£ 69,330$

Table 1.4 - Regulated CO_{2} savings from each stage of the energy hierarchy for non-domestic buildings

[^0]Site-wide energy hierarchy

	Carbon dioxide emissions		
	(Tonnes CO_{2} per annum)		
	Regulated	Unregulated	Total
Part L 2013 compliant building	1315.5	1244.0	2559.5
Be Lean	1238.6	1244.0	2482.6
Be Clean	849.4	1244.0	2093.4
Be Green	765.5	1244.0	2009.5

	Carbon dioxide savings				
			(Tonnes CO_{2} per annum)	$\%$	
	Regulated	Total	Regulated	Total	
Be Lean	Savings from demand reduction	76.9	76.9	5.8%	
Be Clean	Savings from CHP	389.2	389.2	29.6%	
Be Green	Savings from renewable energy	83.9	83.9	6.4%	
Total cumulative savings	550.0	550.0	41.8%	3.2%	

Table 1.6 - Regulated CO_{2} savings from each stage of the energy hierarchy for the whole site

[^1]This Energy Statement has been prepared by chapmanbdsp to support the detailed planning application for the Pentavia, Mill Hill development.

Ine with the London Borough of Barnet Core Strategy, Pentavia, Mill Hill has adopted BREEAM New Construction 2018 Assessment tool and the London Borough of Barnet SPD - Sustainable Design and Construction as the framework to benchmark its wider sustainability performance. The project particularly ocuses on carbon emissions reduction in line with the latest London Plan guidance and GLA's Energy Hierarchy with its "Lean-Clean-Green" approach.

Energy demand has been minimized by implementing passive envelope design strategies, including reduced glazing surface area that is optimized for the orientation of the individual facades; external solar shading provided by the balconies; highly insulated windows and walls combined with high level of air-tightness. This ensures that the whole-house ventilation with minimum fresh air and with high heat recovery rate can meet most of the dwellings' energy needs without the need for active cooling for summer comfort.

Low-carbon energy delivery systems have been chosen to further reduce energy demand. The dwellings are designed to provide effective natural ventilation for pollutants purge and passive cooling in summer, however comfort cooling will be provided to some uses of the non-domestic assets.

The adopted servicing strategy includes communal heating energy supply for space heating and domestic hot water from a gas-fired cogeneration scheme with back-up natural gas fired boilers. The current centralised water-based servicing strategy also allows for future connection to district heating scheme should one become vailable via heat exchanger and a single capped off pipe connection point. Cooling energy supply is from highly efficient air-cooled chillers in the basement to serve the requirements of the non-domestic assets. A PV array located in the unshaded roof is proposed to reduce the scheme's electrical consumption. Sub-metering will be provided for all major energy loads for each commercial unit.
2.1 Software and Modelling Information

The development has been modelled using an approved software package. Stroma FSAP 2012 was used to perform the analysis for the domestic assets and SBEM calculations for the non-domestic assets were carried out using EDSL Tas v9.4 and the UK Building Regulations 2013 Studio.

The calculations presented in this report are based on the carbon factors currently in use for Part L compliance In addition to this report, we have included in the submission the GLA Carbon Emissions Reporting Spreadsheet v1.1 which has the revised tables for the updated SAP 10 carbon factors. This can be found in section 11.9 .

2.2 Development Description

The Pentavia, Mill Hill site is located in the former Pentavia Retail Park which lies in the Mill Hill ward to the north of the London Borough of Barnet.

The proposal consists of redevelopment of site including the demolition of all existing buildings and construction of 844 new Build to Rent Class C3 residential units and $894 \mathrm{~m}^{2}$ ancillary Class C3 Build to Ren facilities; $405 \mathrm{~m}^{2}$ Class A1 Retail; $326 \mathrm{~m}^{2}$ Class A3 and A4 food; and $297 \mathrm{~m}^{2}$ Class D1 Community; new pedestrian access off Bunns Lane; open space, landscaping; car parking; and highway/pedestrian mprovements.

The inclusion of a mixture of commercial spaces aims to make a better use of the existing Pentavia Retail Park, bringing benefits not only for the residents but also to the wider community

The site is bounded to the southwest by the M1, to the east by Watford Way and to the north by Bunns Lane. occupying the former homebase unit).

aration plan of the Pentavia Mill Hill site
The 18 residential blocks will provide dwellings arranged around a communal space, protected visually and acoustically from the motorways that surround the site. The development will also provide D1 use, a fitness entre, security office, storage, dry cleaners, a coffee shop, a hair dresser, a work share hub, lower-ground leve car park, a supermarket and a café

3 Sustainability Drivers
This report identifies policies relevant for energy and carbon emissions elements of the London Plan, in particular, section 5 of the London Plan.

The Mayor's London Plan provides guidelines and targets to the 32 London boroughs and the Corporation of the City of London for the spatial development of London.

The London Plan was first published in 2004 with the current version released in March 2016, including revised energy performance targets in line with the 'zero carbon' target for residential development. Although the atest London Plan defines its targets against the 2010 Building Regulations, this Energy Statement reports the results for Pentavia Mill Hill against the 2013 Building Regulations, as defined in the Greater London Authority's (GLA) latest Energy Planning Guidance (March 2016); and also to ensure that the latest version of software (SAPs 2012 and SBEM 2013) is being used to provide as accurate results as possible.
Other key policies that are applicable to the scheme have been identified and are described in this section.

Figure 3.1 - Energy hierarchy
London Plan policies
This Spatial Development Strategy for Greater London includes objectives to reduce the capital's impact on, and exposure to, the effect of climate change. The most relevant policies for this Sustainability Statement are:

Policy 5.2 Minimising carbon dioxide emissions
The original London plan highlighted the need for the energy hierarchy to be in accordance with:

- Be Lean, use less energy
- Be clean, supply energy efficiently
- Be green: use renewable energy

The current London plan continues to pursue the requirement of this hierarchy and sets targets under policy 5.2 to target improvements over 2010 Building Regulations as follows:

Residential Developments:

- 2013-2016: 40 per cent
- 2016-2031: Zero carbon

Non-Residential developments:

- 2013-2016: 40 per cent
- 2016-2019: As per Building Regulations requirements
- 2019-2031: Zero carbon

As this Energy Statement is being assessed against the current 2013 Building Regulations, it is importan to note that 40% over Building Regulations 2010 is equivalent to 35% over Building Regulations 2013

Policy 5.3 Sustainable design and construction
The requirement for sustainable design and construction is split as follows:
At a strategic level it requires the highest standards of sustainable design and construction to be achieved to mprove the environmental performance of new developments and to adapt to the effects of climate change over the buildings lifetime.

To demonstrate this, development proposals are required to demonstrate that sustainable design standards are integral to the building design, including its construction and operation, and ensure that sustainable measures are considered at the beginning of the design process in order for them to be fully integrated with the building and maximise every opportunity to meet the requirements.

Typical sustainability measures that should be considered are as follows:

- Minimising carbon dioxide emissions across the site, including the building and services (such as heating and cooling systems).
- Avoiding internal overheating and contributing to the urban heat island effect.
- Efficient use of natural resources (including water), including making the most of natural systems both within and around buildings,
- Minimising pollution (including noise, air and urban run-off).
- Minimising the generation of waste and maximising reuse or recycling.
- Avoiding impacts from natural hazards (including flooding).

Policy 5.6 Decentralised energy in development proposals
"Development proposals should evaluate the feasibility of Combined Heat and Power (CHP) systems, and Development proposals should evaluate the feasibility of Combined Heat and Power (CHP) systems, and boundary to adjacent sites"

Policy 5.7 Renewable energy
The strategy of the London plan for application of renewable technology is to make use of the technology with view to achieving the installed renewable energy capacity outlined in the 'Climate Change Mitigation and Energy Strategy'. The London plan does not however set mandatory targets, rather requiring the application to be implemented wherever feasible and with minimal impact on biodiversity and the natural environment.
\qquad

Policy 5.9 Overheating and cooling
his policy is to address the impact of the urban heat island effect in London and encourages design to avoid overheating and excessive heat generation as well as reduce the effects of climate change on the urban hea island effect.

The policy defines a hierarchy for tackling the need for cooling in buildings as follows:

1. Minimise internal heat generation through energy efficient design
2. Reduce the amount of heat entering a building in summer through orientation, shading, albedo fenestration, insulation and green roofs and walls
3. Manage the heat within the building through exposed internal thermal mass and high ceilings
4. Passive ventilation
5. Mechanical ventilation
6. Active cooling system

Barnet Council Policies

Barnet's Local Plan - Core Strategy - Development Plan Document (2012)
Barnet's Local Plan embodies spatial planning - the practice of 'place shaping' to deliver positive social, economic and environmental outcomes and provide the overarching local policy framework for delivering sustainable development in Barnet

Policy CS13
Ensuring the efficient use of natural resources - The London Borough of Barnet will:

- Promote the highest environmental standards for development and through our SPD, on Sustainable Design and Construction and Green Infrastructure we will continue working to deliver exemplary levels of sustainability throughout Barnet in order to mitigate and adapt to the effects of a changing climate;
- Expect all development to be energy efficient and seek to minimise any wasted heat or power;
- In line with London Plan Policy 5.2 Minimising carbon dioxide emissions, expect major development in accordance with the Mayor's energy hierarchy to reduce carbon dioxide emissions beyond the 2010 Building Regulations.
- Maximise opportunities for implementing new district-wide networks supplied by decentralised energ (including renewable generation) in partnership with key stakeholders in areas of major mixed use growth including town centres. Where feasible we will expect all development to contribute to new and existing frameworks:
- Make Barnet a water efficient borough and minimise the potential for fluvial and surface flooding by ensuring development does not cause harm to the water environment, water quality and drainage systems. Development should utilise Sustainable Urban Drainage Systems (SUDS) in order to reduce surface water run-off and ensure such run-off is managed as close to its source as possible subject to loca geology and ground water levels
- We will improve air and noise quality by requiring Air Quality Assessments and Noise Impact Assessments from development in line with Barnet's SPD on Sustainable Design and Construction.

Barnet - Development Management Plan (2012)
Barnet Development Management Plan forms part of Barnet's Local Plan and sets out the policy framework for decision making on planning applications.

Policy DMO2
Development standards - Where appropriate, development will be expected to demonstrate compliance with the following national and London wide standards supported by the guidance set out in the Council's suite of Supplementary Planning Documents:

- BREEAM, the environmental assessment method for non-residential development
- By Design, the CABE urban design principles;
- Lifetime Homes, the 16 design criteria required by the London Plan Policy 3.8

Wheelchair accessibility, the London Plan Policy 3.8

- Minimum floor space, the London Plan Policy 3.5;

Outdoor amenity space, the Sustainable Design and Construction SPD

- Secured by Design, the National Police Initiative; and
- Play space, the London Plan Policy 3.6.

Barnet - Supplementary Planning Document - Sustainable Design and Construction (2016)
The London Borough of Barnet SPD on Sustainable Design and Construction sets out Barnet's technica equirements for environmental design and construction management. The SPD sets out requirements on air noise, water, energy, water, waste and habitat quality in order to achieve protection and enhancement of the environment. The SPD requirements are linked to existing national standards and guidance.

The London Borough of Barnet SPD on Sustainable Design and Construction sets out Barnet's technical equirements for environmental design and construction management. The SPD sets out requirements on air noise, water, energy, water, waste and habitat quality in order to achieve protection and enhancement of the environment.

The SPD requirements are linked to existing national standards and guidance:

- Minimum residential space standards;
- Internal layout and design;
- Outdoor amenity space,
- Daylight, privacy (minimum distance), outlook and light pollution;
- Microclimate - wind and thermal conditions
- Accessible and adaptable dwellings
- Wheelchair user dwellings;
- Energy use in new buildings
- Decentralised energy;
- Retrofitting of existing buildings;
- Water efficiency;
- Waste strategy;
- Air quality;
- Noise quality;
- Flood risk, sustainable urban drainage systems and water quality;
- Biodiversity and habitat quality:
- Archaeological investigation;
- Pollution prevention, contaminated land remediation and construction management;
- BREEAM; and
- Considerate Constructors Scheme.

This section presents the baseline CO_{2} emissions (TER - Target Emissions Rate) i.e. carbon emissions of the building regulations Part L compliant development. Regulated and unregulated CO_{2} emissions were calculated using SAP 2012 for the domestic assets and SBEM for the non-domestic.
844 apartments are proposed at Pentavia, Mill Hill. 57 dwelling types were individually modelled using SAP 2012 and these were then extended to include for the dwellings with exposed surfaces (floors to ground or non-domestic assets and roofs), allowing for an accurate average performance to be calculated in accordance with bulding assulation Pall roposed uses appropriately zoned with NCM internal conditions.

Baseline carbon emissions for the domestic and non-domestic assets of the building are summarised in Table 4.1 and Table 4.2 on the right. The BRUKL documents for the non-domestic part and the residential SAP compliance information can be found in section 11.1 and 11.2 respectively.

Domestic

	Carbon dioxide emissions		
	(Tonnes CO_{2} per annum)		
	Regulated	Unregulated	Total
Part L 2013 compliant building	1014.4	1121.9	2136.3
Be Lean	-	-	-
Be Clean	-	-	-
Be Green	-	-	-

able 4.1 - Baseline CO_{2} emissions for domestic buildings

Non-domestic

	Carbon dioxide emissions		
	(Tonnes CO_{2} per annum)		
	Regulated	Unregulated	Total
	301.1	122.1	423.2
Be Lean	-	-	-
Be Clean	-	-	-
Be Green	-	-	-

Table 4.2 - Baseline CO_{2} emissions for non-domestic buildings

5 Demand Reduction (Be Lean)
This section presents the reduction in CO_{2} emissions achieved through the implementation of the energy demand reduction measures.
he design approach for Pentavia, Mill Hill has targeted demand reduction measures first, giving priority to the optimisation of the building fabric performance in order to reduce the need for heating, cooling and lighting The objective was to maximise efficiency (lean') as much as possible and avoid reliance on complex active/mechanical systems to deliver a low carbon performance. The focus was to achieve a low-energy building rather than just relying on carbon offsetting technologies. Studies were carried out at early design stages to inform the building envelope in terms of the envelope thermal performance with regards to airtightness and levels of insulation.

5.1 Passive Design Measures

Passive measures to reduce energy demand incorporated in the project include

- High levels of insulation for exposed solid envelope elements;
- Double glazing windows
- Optimised glazing-to-wall ratio on the exposed facades based on solar gains for thermal comfort, daylighting for visual comfort and responding to surrounding issues, such as noise and air pollution;
- Improved airtightness
- Maximised passive ventilation potential
- External solar shading protecting glazed areas from unwanted solar gains
5.1.1 Building Fabric

The proposed and target fabric performance for the domestic and non-domestic areas of the development is presented in the table below.

	Domestic		Non-domestic	
	Part L1A - TER	Pentavia, Mill Hill proposed - DER	Part L2A - BER	Pentavia, Mill Hill proposed - TER
External wall U-value	0.18	0.13	0.26	0.18
Exposed wall U-value (corridor/staircase)	n / a	0.16	$\mathrm{~N} / \mathrm{A}$	N / A
Exposed floor U-value	0.13	0.12	0.22	0.16
Exposed roof U-value	0.13	0.13	0.18	0.20
Windows U-value	1.40	1.40	1.60	1.40
Windows g-value	0.63	0.55	0.40	0.45
y-value	0.05	0.15 (default)	N / A	N / A
Air permeability rate	5	3	5 if area $<250 \mathrm{~m}^{2}$ 3 if area $>250 \mathrm{~m}^{2}$	3

Table 5.1 - Fabric performance of domestic and non-domestic areas of the development
5.2 Active Design Measures

Following from the passive measures that dealt with fabric losses and gains balance, energy efficiency (active) measures are also in place at Pentavia, Mill Hill to further reduce energy demand. All dwellings will be provided with a high efficiency whole-house mechanical ventilation with minimum fresh air and very high heat recovery rate. Artificial lighting uses low-energy light fittings and efficient lighting controls that include presence/absence detection and daylight linked dimming where appropriate. Supplementary heating will be provided via radiators whilst cooling for the non-domestic assets will be supplied from the efficient air cooled chillers in the basement.

	Domestic		Non-domestic	
	Part L1A TER	Pentavia, Mill Hill proposed - DER	Part L2A - BER	Pentavia, Mill Hill proposed - TER
Ventilation system	Natural with Extract fans	Balanced with heat recovery	- Central ventilation sfp 0.3 - Terminal unit sfp 0.3 - Heat recovery efficiency 70\% - Variable speed control of fans and pumps - Demand control via CO_{2} sensors	- AHU SFP1. 4 - Heat recovery efficiency 70\% - Variable speed control of fans and pumps - Demand control via CO_{2} sensors - Toilets extract fan SFP 0.8
Cooling	none	none	SEER 4.5	SEER 5.0
Lighting luminaire (Im/circuit watt)	N/A	N/A	60	80
Occupancy control	N/A	N/A	Yes	Yes
Low energy lights \%	100	100	100	100

3 Demand Side Response

Advancement and commercialisation of smart technologies presents additional opportunities to manage and save energy. However, the rate of smart technology development means that specified equipment could be meaningfully improved by the time of procurement. Therefore, some scope flexibility is relevant at design stage in order to take advantage of this.

In this context, the following features will be included/considered during detailed design:

- Power, data and media infrastructure to deliver buildings which are smart-enabled for future connectivity by occupants.
- Smart utility meters provided for all residential units. Commercial units equipped with smart metering via base build or fit-out
- Dwelling heat interface units enabled for connection via domestic smart control systems, such as Hive or Nest, for remote control, interrogation and diagnostics.
- Similarly, dwelling MVHR units enabled for connection to proprietary domestic smart control systems.
- An intelligent building level management strategy, employing big-data analytics for connecting and optimising systems, including; heat network; power; lighting; ventilation; life safety; vertical transportation and security. Provides other advanced features like remote maintenance and diagnostics; predictive tools; identifying inefficiencies, trends and synergies.
- These components also support the operational energy monitoring requirements.
- Thermal storage is proposed, which will permit the CHP to run for longer periods, increasing economic and carbon benefits.

The estimated energy demand reductions for the domestic and non-domestic elements of the development are shown in Table 53 and Table 5.4 below.

Domestic

	Carbon dioxide emissions (Tonnes CO_{2} per annum)		
	Regulated	Unregulated	Total
	1014.4	1121.9	2136.3
Be Lean	978.1	1121.9	2100.0
Be Clean	-	-	-
Be Green	-	-	-

Non-domestic

	Carbon dioxide emissions		
	(Tonnes CO_{2} per annum)		
	Regulated	Unregulated	Total
Part L 2013 compliant building	301.1	122.1	423.2
Be Lean	260.5	122.1	382.6
Be Clean	-	-	-
Be Green	-	-	-

5.5 Energy Demand

The total energy demand (MWh/year) for the domestic and the non-domestic areas of the development are presented in the table below.

	Energy demand following energy efficiency measures (MWh/year)							
Building use	Space heating	Hot water	Lighting	Auxiliary	Cooling	Unregulated electricity	Unregulated gas	
Domestic	1313	1704	261	150	0	31.5	0	
Non-domestic	96	58	352	25	254	234.3	0	

A part of the drive to reduce demand for energy highlighted by Mayor's Cooling Hierarchy set out in the解

London Plan Cooling Hierarchy	Pentavia, Mill Hill
Minimise internal heat generation through energy efficient design	Low energy lighting specified throughout; High efficiency appliances; Balconies provide solar shading to the floors below; Solar control glazing where required; Well insulated hot water systems.
Reduce the amount of heat entering a building in summer through orientation, shading, albedo, fenestration, insulation and green roofs and walls	Building fabric has high levels of insulation; Good air-tightness (target air permeability of 3 $\mathrm{m}^{3} / \mathrm{hr} / \mathrm{m}^{2}$ at 50 Pa); External solar shading provided by protuberating balconies; High-albedo facade and paving materials.
Passive ventilation	Natural daytime and night time ventilation enabled via openable windows and balcony doors; High thermal mass of the concrete structure stabilises daytime internal temperature fluctuations.
Mechanical ventilation	Efficient whole-house ventilation with heat recovery and boost purge fans will ensure adequate ventilation and acoustic comfort.

able 5.6 - Cooling hierarchy at Pentavia Mill Hill

5.7 Overheating Risk Analysis

The well insulated envelope combined with openable windows facing the communal areas (residential areas) provide the potential for very effective daytime and night time natural ventilation with high level of occupan air flow control. This is complemented by a combination of MVHR and boost purge fans. All systems within the dwellings will be compliant with Building Regulations Part F and CIBSE guidelines. Residential ventilation is provided beyond Building Regulations standards in order to provide adequate ventilation despite the sealed windows to the main roads with the average design air change rate being 4 ACH .

The massing of the building blocks contributes to provide self-shading and minimise direct solar radiation. The balconies facing the communal spaces also contributes to prevent overheating, thermal and visual discomfort, such as glare
Detailed overheating analysis has been carried out using EDLS TAS for the residential and commercial areas and these are detailed in the following sections.
5.8 Part L Criterion 3 of the Building Regulations

All non-domestic areas comply with Criterion 3 of the ADL2A:2013 - results can be found in section 11.1.
5.9 Domestic Overheating Checklist

The following checklists assisted the design team to identify potential overheating risk in the residential areas early in the design process and demonstrates the inclusion of passive measures within the building envelope and services design to mitigate overheating and reduce cooling demand in line with the London Plan policy.

Section 1 - Site features affecting vulnerability to overheating		Response
Site location	Urban - within central London or in a high-density conurbation	No
	Peri-urban - on the suburban fringes of London	Yes
Air quality and/or Noise sensitivity are any of the following in the vicinity of buildings?	Busy roads / A roads	Yes
	Railways / Overground / DLR	Yes
	Airport / Flight path	No
	Industrial uses / waste facility	Yes
Proposed building use	Will any buildings be occupied by vulnerable people (e.g. elderly, disabled, young children)?	Possibly
	Are residents likely to be at home during the day (e.g. students)?	No
Dwelling aspect	Are there any single aspect units?	Yes
Glazing ratio	Is the glazing ratio (glazing: internal floor area) greater than 25\%?	No, the overall glazing ratio is 15%
	If yes, is this to allow acceptable levels of daylighting?	N/A
Security - Are there any security issues that could limit opening of windows for ventilation?	Single storey ground floor units	Yes
	Vulnerable areas identified by the Police Architectural Liaison Officer	No
	Other	No

able 5.7 - Section 1 of G1A's Domestic Overheating Checklist

Section 2 - Design features implemented to mitigate overheating risk		Response
Landscaping	Will deciduous trees be provided for summer shading (to windows and pedestrian routes)?	Trees proposed at ground level - these may only provide shading to residential units located at lower levels and protect most pedestrian routes.
	Will green roofs be provided?	Yes, green roofs are proposed.
	Will other green or blue infrastructure be provided around buildings for evaporative cooling?	Yes, blue roofs are envisaged for the scheme.
Materials	Have high albedo (light colour) materials been specified?	The materials specified for the facade have relatively high albedo.
Dwelling aspect	\% of total units that are single aspect	34\%

Section 2 - Design features implemented to mitigate overheating risk		Response
	\% single aspect with N / NE / NW orientation	72\%
	\% single aspect with E orientation	0\%
	\% single aspect with S / SE / SW orientation	28\%
	\% single aspect with W orientation	0\%
Glazing ratio - What is the glazing ratio (glazing; internal floor area) on each facade?	N / NE / NW	15\%
	E	15\%
	S / SE / SW	15\%
	W	15\%
Daylighting	What is the average daylight factor range?	Target is 2% for occupied rooms.
Window opening	Are windows openable?	Yes, windows and doors facing the inner part of the scheme are openable.
	What is the average percentage of openable area for the windows?	50\%
Window opening What is the extent of the opening?	Fully openable	The opening is up to 50% of the total glazing area, but that area has no obstructions.
	Limited (e.g. for security, safety, wind loading reasons)	Windows are casement and around half the glazing area is openable and the doors are sliding, therefore the limitation is at 50\%.
Security	Where there are security issues (e.g. ground floor flats) has an alternative night time natural ventilation method been provided (e.g. ventilation grates)?	Windows with a secured limited aperture for ground floor.
Shading	Is there any external shading?	Yes, the recessed nature of the glazing and balconies will provide solar protection.
	Is there any internal shading?	Curtains and/or internal blinds.
Glazing specification	Is there any solar control glazing?	Glazing with a lower g-value has been specified.
Ventilation - What is the ventilation strategy?	Natural - background	Yes, windows facing the inner part of the scheme are openable in order to provide both background and purge ventilation.

Section 2 - Design features implemented to mitigate overheating risk		Response
		Windows facing outwards are sealed due to noise and air quality issues.
	Natural - purge	Yes, for the units with openable windows.
	Mechanical - background (e.g. MVHR)	Yes, MVHR units will provide both background and purge ventilation.
	Mechanical - purge	Yes
	What is the average design air change rate	4 ACH
Heating system	Is communal heating present?	Yes
	What is the flow/return temperature?	35 degrees
	Have horizontal pipe runs been minimised?	Yes
	Do the specifications include insulation levels in line with the London Heat Network Manual	Not applicable as the project is not connected to a Heat Network.
	Do the specifications include insulation levels in line with the London Heat Network Manual	Not applicable as the project is not connected to a Heat Network.

5.10 Domestic and Non-domestic Overheating Modelling Assumptions

Overheating assessments have been carried out for the non-domestic and domestic areas using CIBSE Guide A and CIBSE TM59 criteria respectively. The following assumptions have been made.

The analysis for the non-domestic and domestic areas has been carried out using Dynamic Therma Modelling software; EDSL TAS version 9.4. This software tool is fully compliant with the CIBSE Applications Manual 11: Building Energy and Environment Modelling.

- Given the fixed location of the site and its proximity to the nearby road network (A1 \& M1), opportunities to design different massing are limited.
- The building orientation is largely fixed by the constraints of the site and its proximity to the nearby road network. The surrounding buildings have not been modelled in order to represent the worst-case scenario for the proposed development. Trees are conventionally excluded from dynamic thermal models but could provide additional shading at lower levels.
- As per the CIBSE TM49: Design Summer Years for London (2014) guidance and to enable the urban heat island effect in the locality of the development to be taken into account, the most representative weather data set for the project location is London Heathrow airport. The assessments have been conducted using the DSY1 (Design Summer Year) weather year for the 2020s, high emissions, 50\% percentile. Additional testing has been undertaken using the 2020 versions of the following two more extreme design weather years; DSY2-2003: a year with a very intense single warm spell; and DSY3-1976: a year with a prolonged period of sustained warmth.
- Occupancy patterns and internal gains for the domestic areas are prescribed by the CIBSE TM59 methodology. The occupancy patterns and internal gains specified in the Simplified Building Energy Mode methodology. The occupancy patterns and internal gains specified in the Simplified Building Energy Mode
(SBEM) database as proposed by the Energy Performance of Buildings Directive (EPBD) 2002/91/EC of the European Parliament and Council are used for the non-domestic areas - 'A345 EatDrink' and 'D2 FitGym' thermostat changed from $25^{\circ} \mathrm{C}$ to $23^{\circ} \mathrm{C}$.

Thermal elements performance (U-values and glazing g-values), shading features (i.e. blinds, overhangs etc.) and thermal mass details can be found in section 5.1.1.

- Windows of the domestic areas from level 01 to the top facing the inner part of the development are openable by 50% throughout the day, while windows at ground floor are assumed to have a limiting ppenable area (10%) due to security issues. Windows of the domestic areas facing outwards are sealed due to noise and air quality issues - these rooms are assumed to have blinds installed. Windows of the non-domestic areas are fixed.
- A representative sample of apartments have been assessed in order to identify all the apartments that might be at risk of overheating. These were those with large glazing areas, having less shading, having large, sun-facing windows, having a single aspect and having limited opening windows. All occupied nondomestic areas of the development have been assessed.
5.11 Domestic Overheating Results for DSY1

Living rooms and bedrooms, as the main occupied zones in the apartments, have been assessed using th ondon Heathrow DSY1, 2020s, high emissions, 50% percentile weather data and the results are presented in the table below. Results for the London Heathrow DSY1 and DSY2, 2020s, high emissions, 50\% percentile weather data are presented in section 11.3 .

Fround		Pass	
Bedrooms	61%	39%	
Inner	61%	39%	
Outer			
Living rooms/Kitchens	11%	89%	
Inner	11%	89%	
Outer			
Levels O1 to top	19%	81%	
Bedrooms	83%	17%	
Inner			
Outer			
Living rooms/Kitchens	17%	83%	
Inner	15%	85%	
Outer	39%	61%	
Total			

The inclusion of corridors in the overheating analysis is mandatory where community heating pipework runs through them. Space and water heating is provided in the development by a community heating system, and the Heat Interface Units (HIU) are located in the communal corridors, hence, the pipework connecting to the central system is permanently charged with hot water all year around to meet the hot water demand. Since this pipework is constantly emitting heat, even if well insulated, it can cause an increase in temperature in these spaces, therefore a communal corridor of block B is assessed for overheating.
The analysis includes the communal corridor heat gains from the water heating pipework and HIUs - losses from pipework are calculated using CIBSE Guide C guidance and standing gains from the HIUs are based on manufacturers' recommendations.

M59 guidance requires that the overheating test for corridors should be based on the number of annual hours for which an operative temperature of $28^{\circ} \mathrm{C}$ is exceeded. Whilst there is no mandatory target to meet, if an operative temperature of $28^{\circ} \mathrm{C}$ is exceeded for more than 3% of the total annual hours, then this should be dentified as a risk. When assessing the communal corridor of block B more than 3% of the total annual hours exceed an operative temperature of $28^{\circ} \mathrm{C}$. Therefore, it is proposed to have mechanical ventilation in the corridors that utilises the staircase smoke ventilation system. The air supply volume will be based on a project specific average heat loss in order to mitigate the overheating risk.
5.12 Non-domestic Overheating Results for DSY1

An overheating assessment has been carried out for the non-domestic areas using CIBSE Guide A for free running buildings. In this case the buildings should be designed to limit the risk of overheating, in accordance with the adaptive comfort methodology outlined in CIBSE TM52: The limits of thermal comfort: avoiding overheating in European buildings. The results for this study are presented in the table below.

	Occupied Summer Hours	Max. Exceedable Hours	Criterion 1: \#Hours Exceeding Comfort Range	Criterion 2: Peak Daily Weighted Exceedance	Criterion 3: \#Hours Exceeding Absolute Limit	Result
Restaurant kitchen	2,448	73	2,448	0	2,448	Fail
Restaurant dining	2,754	82	2,754	0	2,754	Fail
Supermarket display	1,377	41	1,377	0	1,377	Fail
Nursery	814	24	801	14	726	Fail
Fitness centre	1,930	57	1,930	0	1,930	Fail
Coffee shop	2,601	78	2,601	0	2,601	Fail
Coffee shop kitchen	2,601	78	2,601	0	2,601	Fail
Residential meeting space	2,754	82	2,754	0	2,754	Fail
Residents' lounge	2,448	73	2,448	0	2,448	Fail
Coffee shop	2,448	73	2,448	0	2,448	Fail
Coffee shop food prep	2,754	82	2,754	0	2,754	Fail
Hair dresser	1,377	41	1,377	0	1,377	Fail
Dry cleaner	1,836	55	1,836	0	1,836	Fail
Workshare hub	1,377	41	1,377	0	1,377	Fail
Concierge	1,836	55	1,836	0	1,836	Fail
Maintenance office	2,601	78	2,601	0	2,601	Fail
Retail	1,377	41	1,377	0	1,377	Fail

able 5.10 - Overheating results for the non-domestic areas using the DSY1 weather data for free running buildings

Due to the number of failings, cooling is proposed for the occupied non-domestic areas of the development For air conditioned buildings, summer operative temperature ranges in occupied spaces are in accordance with the criteria set out in CIBSE Guide A Environmental design, Table 1.5. The results for this additional study are
presented in the table below and the results for the London Heathrow DSY1 and DSY2, 2020s, high emissions, 50% percentile weather data are presented in section 11.3

	Operative temperature >24	Operative temperature >25	Operative temperature >26	Operative temperature >27	Operative temperature >28	Result
Restaurant kitchen	0	0	0	0	0	Pass
Restaurant dining	0	0	0	0	0	Pass
Supermarket display	1,587	1,634	0	0	0	Pass
Nursery	91	0	0	0	0	Pass
Fitness centre	280	0	0	0	0	Pass
Coffee shop	1,190	\bigcirc	\bigcirc	\bigcirc	0	Pass
Coffee shop kitchen	0	0	0	0	0	Pass
Residential meeting space	1,821	0	0	0	0	Pass
Residents' lounge	1,973	0	0	0	0	Pass
Coffee shop	2,292	387	0	0	0	Pass
Coffee shop food prep	0	0	0	0	0	Pass
Hair dresser	904	660	11	0	0	Pass
Dry cleaner	1,339	253	0	0	0	Pass
Workshare hub	1,553	606	0	0	0	Pass
Concierge	1,550	0	0	0	0	Pass
Maintenance office	1,202	901	0	0	0	Pass
Retail	927	389	0	0	0	Pass

able 5.11 - Overheating results for the non-domestic areas using the DSY1 weather data for conditioned buildings
5.13 Active Cooling

No active cooling' is proposed for any of the residential areas of the development. As shown in section 5.12 natural ventilation is not enough to guarantee the occupant's comfort (in line with the cooling hierarchy set out in London Plan Policy 5.9) for the occupied non-domestic areas, therefore the cooling requirements of the different elements of the development are identified in the table below. A detailed breakdown of the cooling demand for all non-domestic areas of the development can be found in Appendix 11.4

	Area weighted average non-domestic cooling demand $\left(M J / \mathrm{m}^{2}\right)$	Total area weighted non-domestic cooling demand $(M J /$ year $)$
Actual	45.1	917,371
Notional	42.3	858,847

Table 5.12-Cooling demand for the non-domestic areas of the development

6 Heating Infrastructure (Be Clean)
6.1 Area-Wide Heat Network

At the time of writing, the London Heat Map shows that there are no existing area wide district heating networks within reasonable connection distance. The Heat Map does reveal that there is a proposed "Colindale CHP" future network on the other side of the M1 motorway.
Preliminary communications with London Borough of Barnet's Energy Resource Manager (section 11.5) suggests that distance \& the motorway could be prohibitive. Further feasibility investigations can be undertaken during design development because the magnitude of Pentavia's heat load could be influential.

The Pentavia energy centre will be equipped with appropriate space to facilitate future connection.

Figure 6.1 - Heat Map of Pentavia site (black circle)
6.2 Site-Wide Heat Network

Pentavia will be provided with a communal heat network served by a central energy centre which affords the following advantages:

- Future connection to area wide district heating scheme for energy sharing and network expansion
- Future installation of advanced technology heat generators towards achieving zero carbon

CHP plant is proposed because of the magnitude of Pentavia's heat demands, which may facilitate future network expansion and connection with "Colindale's Area Action Plan".

ESCOs will be engaged during detailed design to investigate systems, procurement, operating and funding options. 'CIBSE Heat Networks: Code of Practice' will be adopted throughout.

Further details on CHP and energy centre can be found in section 11.6.
At this concept stage, losses from distribution pipework can only be estimated at best and will be accurately calculated during detailed design.

Feasibility of bio-liquid CHP will be investigated during detailed design to further reduce emissions.
6.3 'Be Clean' Results

Table 6.1 and Table 6.2 show the expected carbon emissions and reductions after the introduction of the CHP. The CHP emissions and preliminary demand profiles and a CHP assessment can be found in section 11.6.

Domestic

	Carbon dioxide emissions		
	(Tonnes CO2 per annum)		
	Regulated	Unregulated	Total
Part L 2013 compliant building	1014.4	1121.9	2136.3
Be Lean	978.1	1121.9	2100.0
Be Clean	615.2	1121.9	1737.1
Be Green	-	-	-

Table 6.1 - Domestic CO_{2} emissions after the clean stage of the energy hierarchy

Non-domestic	Carbon dioxide emissions		
	(Tonnes CO2 per annum)		
	Regulated	Unregulated	Total
Part L 2013 compliant building	301.1	122.1	423.2
Be Lean	260.5	122.1	382.6
Be Clean	234.2	122.1	356.3
Be Green	-	-	-

able 6.2 - Non-domestic CO_{2} emissions after the clean stage of the energy hierarchy

6.4 Air Quality

A comprehensive Air Quality Assessment has been undertaken by Mayer Brown, dated March 2019 and included in the planning submission.
The assessment of building emissions therefore demonstrates that on the worst-case assumption that the cogeneration plant will have a NO_{x} emission of $50 \mathrm{mg} / \mathrm{Nm}^{3}$, the buildings emissions will not reach neutrality However, it is understood that a Selective Catalic Reduction System (SCR) which removes NOx from the

The predicted Total Transport Emissions associated with the Pentavia Development are expected to be higher than the benchmarked emissions. As noted the GLA AQN Planning Support Update states that in circumstances where the benchmark is exceeded, mitigation measures to reduce emissions may be applied on site or offsite. In relation to this, the Pentavia Site offers a number of encouragements to model shift or 'Active Travel' as supported by Transport for London (TfL), to encourage residents and site users away from car use. These are set out in detail within the Framework Travel Plan submitted with the application

Energy Source	Total Fuel Consumption: Residential	Total Fuel Consumption: Non-Residential
Grid Electricity	$411 \mathrm{MWh} /$ year	$430 \mathrm{MWh} /$ year
Domestic/Communal Boilers	$1,125 \mathrm{MWh} /$ year	$343 \mathrm{MWh} /$ year
Gas CHP	$4,615 \mathrm{MWh} /$ year	n / a
Connection to existing DH network	n / a	n / a
Other Gas uses	n / a	n / a
Table 6.3 - GLA Reporting Template Table 14: Air Quality Impacts		

2050 is over 30 years away, during which time the energy landscape could evolve significantly, especially when the rates of change are considered

The Government's 'Clean Growth Strategy' report, produced to support 'Climate Change Act' commitments, declares that technological breakthroughs that will help deliver the carbon budgets and targets cannot be exactly predicted. The 'pathways' illustrated in the strategy are based on current technologies. For buildings, he proposals include the following

- Virtually zero carbon electricity grid by 2050
- Smart electricity grids
- Low carbon sources of heating through district heating

Hydrogen fuel for heating
Advancements in existing and emerging technologies are accelerating, resulting in even further synergies and discoveries. The rate, as well as the nature and magnitude of change are expected to increase. Building leve echnologies which will be available to facilitate zero carbon operation cannot be exactly predicted now.

However, it is safe to speculate, that when the Government achieves these targets, then this development will be plugged into a zero-carbon infrastructure. It is envisaged that any residual carbon will be mitigated by the building level technology available at that time.

Proposals for this development include an energy centre with district heating network where zero carbon heat generators can be installed in future

7 Renewable Energy (Be Green)
7.1 Low and Zero Carbon Technologies Study

Photovoltaic panels (PVs)
hotovoltaic panels convert sunlight into usable electricity, at relatively low efficiency of conversion at around $6-19 \%$ (depending on the technology) compared to solar thermal collectors ($35-65 \%$). Despite this low efficiency their advantage is low maintenance and zero-carbon electricity that offsets grid electricity and hence provides considerable carbon emission savings. Photovoltaic panels operate optimally when installed in a southerly orientation with inclination of 15-45 degrees.

PV technology is proposed for Pentavia, Mill Hill. Although the available unshaded roof area is relatively smal when compared to the development's area and electricity requirements, the proposed PV array attempts to maximise the development's renewable energy generation capability.
7.2 'Be Green' Results
panels are proposed for Pentavia Mill Hill's energy strategy. A 246 kWp output array is envisaged, which provides a site-wide domestic carbon emission reduction of 6.4%. Drawings provided in the Design and Access Statement illustrate the provisional allocated roof spaces for the PV array
Table 7.1 and Table 7.2 below show the expected carbon emissions at 'Be Green' stage for the domestic and non-domestic assets in Pentavia, Mill Hill.

Domestic

	Carbon dioxide emissions		
	(Tonnes CO_{2} per annum)		
	Regulated	Unregulated	Total
	1014.4	1121.9	2136.3
Be Lean	978.1	1121.9	2100.0
Be Clean	615.2	1121.9	1737.1
Be Green	531.3	1121.9	1653.2

Table 7.1 - Domestic CO_{2} emissions after the green stage of the energy hierarchy

	Carbon dioxide emissions		
	(Tonnes CO_{2} per annum)		
	Regulated	Unregulated	Total
Part L 2013 compliant building	301.1	122.1	423.2
Be Lean	260.5	122.1	382.6
Be Clean	234.2	122.1	356.3
Be Green	234.2	122.1	356.3

A roof plan showing the location of the PV s on each block can be seen in the figure on the right.

Figure 7.1 - Roof plan showing the PVs location on each block of the development

As part of the London Plan, developments are required to offset all remaining CO_{2} emissions associated with the building through a financial contribution towards measures which reduce CO_{2} emissions from the existing building stock.

Barnet SPD - Sustainable design and construction states that carbon offsetting will be considered in line with he Greater London Authority guidance and a figure of $£ 60$ /tonne will be used over a 30 year period. London Plan Policy 5.2 sets out that where the required percentage improvements beyond Part L of the Building Regulations are not met on-site, any short fall should be provided off-site or through a cash-in-lieu contributio o the relevant borough. The benefit of the fund is in unlocking CO_{2} saving measures with boroughs to identify suitable projects. Suitable projects will be identified on a site by site basis focusing on publicly owned buildings such as schools local to the development which can provide wider community benefits.
The CO_{2} emissions offset cost is currently therefore set at $£ 1,800 / \mathrm{tCO}_{2}$.
8.1 Offset Payment

Following the implementation of the energy hierarchy, the estimated carbon shortfall is $569.8 \mathrm{tCO}_{2} /$ year
The estimated carbon offset payment for this development is $£ 1,025,649$

9 Monitoring

Smart meters will generally be installed as described in section 5.3 and the CIBSE Heat Networks: Code of Practice guidance document

10

Conclusion

The energy strategy for Pentavia, Mill Hill targeted demand reduction measures first, giving priority to optimization of building fabric to reduce the need for heating, cooling, and artificial lighting. The objective was o have buildings as energy efficient (i.e. 'lean') as possible without relying on overly complicated systems or echnologies to deliver low carbon performance. The aim was to achieve a low-energy building without relying trategies.

The design team has put considerable effort in optimizing the fabric of the building envelope and in mplementing other energy demand reduction measures so that the provision of a communal heating system connected to a CHP achieves a carbon emission reduction greater than the minimum target of the London Plan of 35%. Carbon emissions reduction goes beyond this target with the implementation of renewables, in this case PV panels.
The proposed development of Pentavia, Mill Hill achieves overall 41.8% reduction in regulated carbon emissions over the Part L 2013.

BRUKL Output Document HM Government Compliance with England Building Regulations Part L 2013						
Project name						
Mill Hill					As designed	
Date: Wed Nov 22 10:29:26 2017						
Administrative information						
Building Details Address: London, Certification tool Calculation engine: TAS Calculation engine version: "v9.4.0" Interface to calculation engine: TAS Interface to calculation engine version: BRUKL compliance check version: v5.	Calculation engine version: "v9.4.0" Interface to calculation engine: TAS Interface to calculation engine version: v9.4.0 BRUKL compliance check version: v5.2.g. 3			ner D ame: lephon ddress: rtifier ame: elephon ddress:	etails number: details number:	
Criterion 1: The calculated CO_{2} emission rate for the building should not exceed the target						
CO_{2} emission rate from the notional building, $\mathrm{kgCO}_{2} / \mathrm{m}^{2}$.annum Target CO_{2} emission rate (TER), $\mathrm{kgCO}_{2} / \mathrm{m}^{2}$ annum Building CO_{2} emission rate (BER), $\mathrm{kgCO} / \mathrm{m}^{2}$.annum Are emissions from the building less than or equal to the target? Are as built details the same as used in the BER calculations?						14.8
						14.8
						12.8
						$\mathrm{BER}=<\mathrm{TER}$
						Separate submission
Criterion 2: The performance of the building fabric and the building services should achieve reasonable overall standards of energy efficiency						
Values not achieving standards in the Non-Domestic Building Services Compliance Guide and Part L are displayed in red. Building fabric						
Element		Uotumt	U.cate	U.calc	Surface	where the maximum value occurs*
Wall**		0.35	0.24	0.61	spandrel	
Floor		0.25	0.16	0.16	Exposed	Floor
Roof		0.25	0.13	0.2	Exposed	ceiling to resi
Windows***, roof windows, and rooflights		2.2	1.41	1.41	Curtain w	wall FX
Personnel doors		2.2	-	-	No person	onal doors in project
Vehicle access \& similar large doors		1.5	-	-	No vehicle	cle doors in project
High usage entrance doors		3.5	-	-	No high u	usage entrance doors in project
Air Permeability	Worst acceptable standard				This building	
$\mathrm{m}^{3} /\left(\mathrm{h} . \mathrm{m}^{2}\right)$ at 50 Pa	10				3	

Building services
The standard values listed below are minimum values for efficiencies and maximum values for SFPS.

Refer to the Non-Domestic Buidding Services Compliance Guide for details. | Whole building lighting automatic monitoring \& targeting with alarms for out-of-range values | $N O$ |
| :--- | :--- | :--- | Whole building electric power factor achieved by power factor correction <0.9

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(//s)]	HR efficiency
This system	0.91		-	1.1	0.7
Standard value	N/A	N/A	N/A	$1.1{ }^{\wedge}$	N/A
Automatic monitoring \& targeting with alarms for out-of-range values for this HVAC system ${ }^{\text {a }}$ YE					
\wedge Allowed SFP may be increased by the amounts specified in the Non-Domestic Building Services Compliance Guide if the system includes additional components as listed in the Guide.					
2- Food Prep Areas (3 Zones)					
	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(//s)]	HR efficiency
This system	0	-	-	1	0.7
Standard value	N/A	N/A	N/A	N/A	0.5

| Automatic monitoring \& targeting with alarms for out-of-range values for this HVAC system | YES |
| :--- | :--- | :--- | :--- | :--- |

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(I/s)]	HR efficiency
This system	0.91	-	-	1.5	0.7
Standard value	N/A	N/A	N/A	$1.5{ }^{\wedge}$	0.65
${ }^{\wedge}$ Allowed SFP may be increased by the amounts specified in the Non-Domestic Building Services Compliance Guide if the system includes additional components as listed in the Guide.					
4- Carpark (LG car park)					
	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(//s)]	HR efficiency
This system	0	-	-	1.4	0.7
Standard value	N/A	N/A	N/A	N/A	0.65

Automatic monitoring \& targeting with alarms for out-of-range values for this HVAC system YES

7- Creche (Core D G nursery)

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(I/s)]	HR efficiency
This system	0.91	5	-	0.5	0.7
Standard value	N/A	2.6	N/A	1.6^{\wedge}	0.65
A					

\qquad
Automatic monitoring \& targeting with alarms for out-of-range values for this HVAC system YES
AAlowed SFP may be increased by the amounts specified in the Non-Domestic Builing Services Compliance Guide if the system includes

8- Fitness Centre (Core F G fitness centre) \begin{tabular}{|l|l|l|l|l|}
\& Heating efficiency \& Cooling efficiency \& Radiant efficiency \& SFP [W/(l/s)]

 HR efficiency

\hline This system \& 0

\hline Sa

 \qquad

5

\hline 2.6
\end{tabular} \qquad N/A \qquad

 Automatic monitoring \& targeting with alarms for out-of-range values for this HVAC system
^Allowed SFP may be increased by the amounts specified in the Non-Domestic Buiding Services Compliance Guide if the system include A Allowed SFP may be increased by the am
additional components as listed in the Guide.

9- Salon (Core K G hair dresser)

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(I/s)]	HR efficiency
This system	0.91	5	-	1.5	0.7
Standard value	N/A	2.6	N/A	1.6^	0.65
Automatic monitoring \& targeting with alarms for out-of-range values for this HVAC syste					

-

10- Concierge (3 Zones)

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(//s)]	HR efficiency
This system	0.91	5	-	1.5	0.7
Standard value	N/A	2.6	N/A	$1.6{ }^{\wedge}$	0.65

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(//s)]	HR efficiency			
This system	0.91	5	-	1.5	07		This system	0.91
:---	:---							
Standard value	N/A							
			Standard value	N/A	2.6	N/A	1.6^{\wedge}	
:---	:---	:---	:---	:---				
Automatic monitoring \& targeting with alarms for out-of-range values for this HVAC system	0.65				N/A Automatic monitoring \& targeting with alarms for out-of-range values for this HVAC system YES			

A Alowed SFP may be increased by the amounts specified in the Non-Domestic Buiding Serices Compliance Guide it the system includes A Alowed SFP may be increased by the amo
additional components as isted in the Guide.

12- Supermarket (2 Zones)

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(l/s)]	HR efficiency
This system	0.91	5	-	1.5	0.7
Standard value	N/A	2.6	N/A	$1.6{ }^{\wedge}$	0.65
Automatic monitoring \& targeting with alarms for out-of-range values for this HVAC system					

13- Store

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(//s)]	HR efficiency			
This system	0.91	-	-	-				
Standard value	N/A	N/A	N/A	N/A	N/A	Standard vilue N/A NA \qquad	Automatic monitoring \& targeting with alarms for out-of-range values for this HVAC system	YES
:---	:---	:---	:---	:---	:---			

1- New HWS Circuit

	Water heating efficiency	Storage loss factor [kWh/litre per day]
This building	0.91	0
Standard value	0.9^{*}	N/A
Standard shown is for gas boiers $>30 \mathrm{~kW}$ output. For boilers $<=30 \mathrm{~kW}$ output. limiting efficiency is 0.73.		

"No zones in project where local mechanical ventilation, exhaust, or terminal unit is applicable"

General lighting and display lighting	Luminous efficacy [${ }^{\text {m/W] }}$			
Zone name	Luminaire	Lamp	Display lamp	General lighting [W]
Standard value	60	60	22	
Core A LG restaurant dining	-	80	22	610
Core A LG restarant kitchen	-	80	-	593
Core ALG circ	-	80	-	188
Core A LG stairs	-	80	-	84
Core A LG refuse	80	-	-	52
Core ALG store	80	-	-	40
Core A LG bike store	80	-	-	91
Core CLG energy centre	80	-	-	1008
Core C LG sprinkler tank room	80	-	-	133
Core CLG comm room	80	-	-	136
Core CLG boiler room	80	-	-	149
Core CLG flues	80	-	-	110
Core CLG LV switch room	80	-	-	206
Core CLG gas meter	80	-	-	120
Core CLG substation	80	.	-	142
Core C LG circ 1	-	80	-	130
Core CLG stairs	-	80	-	83
Core CLG circ 2	-	80	-	102
Core C LG refuse	80	-	-	49
Core ELG water store	80	-	-	115
Core ELG bike store	80	-	-	133
Core ELG circ1	-	80	-	166
Core ELG circ2	-	80	-	77
Core ELG stairs	-	80	-	86
Core ELG refuse	80	-	-	53
Core G LG stairs	-	80	-	76
Core G LG circ	-	80	-	150
Core G LG bike store	80	-	-	66
Core G LG refuse	80	-	-	43
CoreILG stairs	-	80	-	

General lighting and display lighting	Luminous efficacy [$\mathrm{lm}^{\text {/ }} \mathrm{W}$]			
Zone name	Luminaire	Lamp	Display lamp	General lighting [w]
Standard value	60	60	22	
Core ILG circ	-	80	-	99
Core ILG bike store	80	-	-	81
Core ILG refuse	80	-	-	47
Core JLG stairs	-	80	-	64
Core JLG circ	-	80	-	156
Core J LG refuse	80	-	-	35
Core J LG bike store	80	-	-	89
Core LLG stairs	-	80	-	90
Core LLG refuse	80	-	-	45
Core LLG circ	-	80	-	157
Core LLG bike store	80	-	-	134
Core LLG LV switch room	80	-	-	252
Core L LG substation	80	-	-	188
Core NLG stairs	-	80	-	72
Core NLG circ	-	80	-	73
Core N LG bike store	80	-	-	64
Core NLG refuse	80	-	-	42
Core OLG stairs	-	80	-	61
Core OLG circ	-	80	-	61
Core OLG bike store	80	-	-	92
Core OLG refuse	80	-	-	32
Core QLG stairs	-	80	-	84
Core QLG circ	-	80	-	154
Core Q LG bike store	80	-	-	133
Core QLG refuse	80	-	-	45
Core QLG LV switch room	80	-	-	243
Core QLG substation	80	-	-	187
Core R LG stairs	-	80	-	78
Core RLG circ	-	80	-	112
Core RLG bike store	80	-	-	73
Core RLG refuse	80	-	-	38
Core R LG LV switch room	80	-	-	260
Core R LG substation	80	-	-	153
Core B LG supermarket display	-	80	22	5386
Core B LG supermarket store	80	-	-	180
Core BLG stairs	-	80	-	88
Core BLG circ1	-	80	-	113
Core BLG circ2	-	80	-	61
Core BLG bike store	80	-	-	48
Core BLG refuse	80	-	-	36
Core D LG stairs	-	80	-	92
Core DLG circ	-	80	-	159
Core D LG refuse	80	-		37

General lighting and display lighting	Luminous efficacy [${ }^{\text {m/W } / \mathrm{W} \text {] }}$			
Zone name	Luminaire	Lamp	Display lamp	General lighting [W]
Standard value	60	60	22	
Core D LG bike store	80	-	-	192
Core DLG LV switchroom	80	-	-	311
Core DLG substation	80	-	-	277
Core FLG stairs	-	80	-	93
Core FLG circ	-	80	-	153
Core FLG refuse	80	-	-	36
Core FLG bike store	80	-	-	91
Core FLG LV switchroom	80	-	-	276
Core FLG substation	80	-	-	152
Core HLG stairs	-	80	-	93
Core HLG circ	-	80	-	155
Core HLG refuse	80	-	-	35
Core H LG bike store	80	-	-	105
Core KLG stairs	-	80	-	89
Core KLG circ	-	80	-	143
Core KLG refuse	80	-	-	59
Core K LG bike store	80	-	-	59
Core MLG stairs	-	80	-	91
Core MLG circ	-	80	-	123
Core MLG refuse	80	-	-	46
Core M LG bike store	80	-	-	68
Core MLG water tank	80	-	-	137
Core P LG stairs	-	80	-	75
Core PLG circ	-	80	-	84
Core P LG refuse	80	-	-	70
Core P LG bike store	80	-	-	78
LG car park	-	80	-	24712
Core P G maintenance office	80	-	-	794
Core P G concierge	-	80	22	280
Core PG retail	-	80	22	847
Core M G workshare hub	80	-	-	1117
Core M G dry cleaner	-	80	22	2203
Core K G coffee shop	-	80	22	347
Core K G coffee shop food prep	-	80	-	332
Core K G hair dresser	-	80	22	1482
Core HG resindents lounge	-	80	22	296
Core H G resi meeting space	-	80	22	448
Core H G coffee shop kitchen	-	80	-	343
Core H G coffee shop	-	80	22	314
Core FG fitess centre	-	80	-	430
Core D G nursery	80	-	-	781

Criterion 3: The spaces in the building should have appropriate passive control measures to limit solar gains		
Zone	Solar gain limit exceeded? (\%)	Internal blinds used?
Core A LG restaurant dining	N/A	N/A
Core B LG supermarket display	N/A	N/A
Core B LG supermarket store	N/A	N/A
Core P G maintenance office	NO (-60\%)	YES
Core P G concierge	NO (-67\%)	YES
Core PG retail	NO (-51\%)	YES
Core M G workshare hub	NO (-73\%)	YES
Core M G dry cleaner	NO (-49\%)	YES
Core K G coffee shop	NO (-22\%)	YES
Core K G hair dresser	NO (-37\%)	YES
Core HG resindents lounge	NO (-57\%)	YES
Core HG resi meeting space	NO (-73\%)	YES
Core HG coffee shop	NO (-78\%)	YES
Core FG fitness centre	NO (-78\%)	YES
Core D G nursery	NO (-79\%)	YES

Criterion 4: The performance of the building, as built, should be consistent with the
 calculated BER

Separate submission
Criterion 5: The necessary provisions for enabling energy-efficient operation of the
building should be in place
Separate submission

EPBD (Recast): Consideration of alternative energy systems

Were alternative energy systems considered and analysed as part of the design process? Is evidence of such assessment available as a separate submission?
Is evidence of such assessment avaliable as a separate
Are any such measures included in the proposed design? \qquad YES

Energy Consumption by End Use [kWh/m]

	Actual	Notional
Heating	5.21	6.47
Cooling	2.51	3.1
Auxiliary	1.24	1.27
Lighting	17.42	20.81
Hot water	3.27	3.13
Equipment*	11.58	11.58
TOTAL**	29.65	34.77

Energy Production by Technology [kWh/m²]

Energy \& CO_{2} Emissions Summary

Actual

Notion

Heating + cooling demand $\left[\mathrm{MJ} / \mathrm{m}^{2}\right]$ | Actual |
| :--- |
| 62.21 |
| 75.33 | Primary energy" $\mathrm{kWh} / \mathrm{m}]$

Total emissions $\left[\mathrm{kg} / \mathrm{m}^{2}\right]$		12.8	148
	1423		

Key to terms


```
Heat oo [kWh/m2]
Cool con[[WWh/m2]
Aux con[kWh/m2]
M Cool SSEEF
Col
l}=\mathrm{ = Heaing energy demand
= Heating eneryy consumpition
= =uxiliny enetyy consumption (fitco(for notional buililing, value depends on activity glazing class)
= Heating system seasonalelificionyy for notional
= Cooing system seasonale eneryy efficiency ratio 
```

Heaa ge
CTI ge
ST

Key Features
The BCO can give particular attention to items with specifications that are better than typically expected.
Building fabric

Element	Uityp	U:Min	Surface where the minimum value occurs*
Wall	0.23	0.18	External Wall
Floor	0.2	0.16	Exposed Floor
Roof	0.15	0.13	Roof
Windows, roof windows, and rooflights	s 1.5	1.41	Curtain wall FX
Personnel doors	1.5	-	No personal doors in project
Vehicle access \& similar large doors	1.5	-	No vehicle doors in project
High usage entrance doors	1.5	-	No high usage entrance doors in project
Air Permeability	Typical value		This building
$\mathrm{m}^{3}\left(\right.$ (h.m) ${ }^{\text {at }} 50 \mathrm{~Pa}$			

BRUKL Output Document
 (2) HM Government
 Compliance with England Building Regulations Part L 2013

Project name

Mill Hill
As designed
Date: Wed Nov 22 09:44:11 2017

Administrative information	
Building Details Address: London,	Owner Details Name: Telephone number:
Certification tool Calculation engine: TAS	Address: ,,
Calculation engine version: "v9.4.0" Interface to calculation engine: TAS Interface to calculation engine version: v9.4.0 BRUKL compliance check version: v5.2.g. 3	Certifier details Name: Telephone number: Address:
Criterion 1: The calculated CO_{2} emission rate for the building should not exceed the target	

CO_{2} emission rate from the notional building, $\mathrm{kgCO}_{2} / \mathrm{m}^{2}$.annum	14.8
Target CO_{2} emission rate (TER), $\mathrm{kgCO}_{2} / \mathrm{m}^{2}$. annum	14.8
Building CO_{2} emission rate (BER), $\mathrm{kgCO}_{2} / \mathrm{m}^{2}$. annum	11.5
Are emissions from the building less than or equal to the target?	$\mathrm{BER}=<$ TER
Are as built details the same as used in the BER calculations?	Separate submission

Criterion 2: The performance of the building fabric and the building services should achieve reasonable overall standards of energy efficiency				
Values not achieving standards in the Non-Domestic Building Services Compliance Guide and Part L are displayed in red Building fabric				
Element	U $_{\text {ctimit }}$	U $\mathrm{Ca}_{\text {cale }}$	U. i alc	Surface where the maximum value occurs*
Wall**	0.35	0.24	0.61	spandrel
Floor	0.25	0.16	0.16	Exposed Floor
Roof	0.25	0.13	0.2	Exposed ceiling to resi
Windows"**, roof windows, and rooflights	2.2	1.41	1.41	Curtain wall FX
Personnel doors	2.2			No personal doors in project
Vehicle access \& similar large doors	1.5			No vehicle doors in project
High usage entrance doors	3.5			No high usage entrance doors in project
Uatimit $=$ Limiting area-weighted average U-values $\left[W /\left(m^{2} K\right)\right]$ $U_{\text {as calc }}=$ Calculated area-weighted average U-values $\left[W /\left(m^{2} K\right)\right] \quad U_{i}$-calc $=$ Calculated maximum individual element U-values $\left[W /\left(m^{2} K\right)\right]$ - There might be more than one surface where the maximum U-value occurs. ** Automatic U-value check by the tool does not apply to curtain walls whose limiting standard is similar to that for windows. ... Display windows and similar glazing are excluded from the U-value check. N.B.: Neither roof ventilators (inc. smoke vents) nor swimming pool basins are modelled or checked against the limiting standards by the tool.				

$\mathrm{m}^{3} /\left(\mathrm{h} . \mathrm{m}^{2}\right.$) at 50 Pa \qquad 10 d This building
$\mathrm{m}^{3}\left(\mathrm{~h} . \mathrm{m}^{2}\right)$ at 50 Pa
The standard values listed below are minimum values for efficiencies and maximum values for SFPs.

Refer to the Non-Domestic Buidding Services Compliance Guide for details. | Whole building lighting automatic monitoring \& targeting with alarms for out-of-range values | NO |
| :--- | :--- | :--- | Whole building electric power factor achieved by power factor correction <0.9

1- Plant areas (19 Zones)

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(//s)]	HR efficiency
This system	0.45	-	-	1.1	0.7
Standard value	N/A	N/A	N/A	$1.1{ }^{\wedge}$	N/A
Automatic monitoring \& targeting with alarms for out-of-range values for this HVAC system ${ }^{\text {a }}$ YES					
${ }^{\wedge}$ Allowed SFP may be increased by the amounts specified in the Non-Domestic Building Services Compliance Guide if the system includes additional components as listed in the Guide.					
2- Food Prep Areas (3 Zones)					
	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(//s)]	HR efficiency
This system	0	-	-	1	0.7
Standard value	N/A	N/A	N/A	N/A	0.5

This system	0
Standard value	

N/A
N/A N/A N N A 0.5 \qquad
3-Communal areas (39 Zones)

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(//s)]	HR efficiency
This system	0.45	-	-	1.5	0.7
Standard value	N/A	N/A	N/A	$1.5{ }^{\wedge}$	0.65
Automatic monitoring \& targeting with alarms for out-of-range values for this HVAC system ${ }^{\text {a }}$ YES					
^ Allowed SFP may be increased by the amounts specified in the Non-Domestic Building Services Compliance Guide if the system include additional components as listed in the Guide.					
4- Carpark (LG car park)					
	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(//s)]	HR efficiency
This system	0	-	-	1.4	0.7
Standard value	N/A	N/A	N/A	N/A	0.65

5- Eat \& drink (3 Zones)

7- Creche (Core D G nursery)

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(//s)]	HR efficiency
This system	0.45	5	-	1.5	0.7
Standard value	N/A	2.6	N/A	$1.6{ }^{\wedge}$	0.65
Automatic monitoring \& targeting with alarms for out-of-range values for this HVAC system YES					

- Allowed SFP may be increased by the ammunts specified in the Non-Domestic Buiding Services Compliance Guide if the system includes

8- Fitness Centre (Core FG fitness centre)

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(l/s)]	HR efficiency
This system	0	5	-	1.5	0.7
Standard value	N/A	2.6	N/A	1.6^{\wedge}	0.65
Automatic monitoring \& targeting with alarms for out-of-range values for this HVAC system	YES				
^Allowed SFP may be increased by the amounts specified in the Non-Domestic Buiding Serices Compliance Guide it the system includes					

${ }^{\text {A }}$ Allowed SFP may be increased by the amounts specified in the Non-Domestic Buiding Serices Compliance Guide if the system include
additional components as sisted in the Guid

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(//s)]	HR efficien						
This system	0.45	5	-	1.5	0.7						
Standard value	N/A	2.6	N/A	1.6^{\wedge}	0.65		Standard value	N/A	2.6	N/A	1.6^{\wedge}
:---	:---	:---	:---	:---							
Autrat	0.65										

Automatic monitoring \& targeling wht alarms tor out-or-range values for his AVAC system Y YES
^Allowed SFP may be increased by the amounts spectied in the Non-Domestic Buididing Services Compliance Guide it the system includes
10-Concierge (3 Zones)

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(//s)]	HR efficiency
This system	0.45	5	-	1.5	0.7
Standard value	N/A	2.6	N/A	$1.6{ }^{\wedge}$	0.65
Automatic monitoring \& targeting with alarms for out-of-range values for this HVAC system YES					

adoditional compononents as is listed in the Guide.
11-Office (2 Zones)

| | Heating efficiency | Cooling efficiency | Radiant efficiency | SFP [W/(//s)] | HR efficiency |
| :--- | :--- | :--- | :--- | :--- | :--- | | This system | 0.45 |
| :--- | :--- | Standard value N/A | 5 |
| :--- | :--- |
| 2.6 | N/A \qquad 1.6^{\wedge} 0.7 Automatic monitoring \& targeting with alarms for out-of-range values for this HVAC system YES A Allowed SFP may be increasesed by the amourts specified in the Non-Domestic Building Serices Compliance Guide it the system includ

additional components as isted in the Guide.

12- Supermarket (2 Zones)

Local mechanical ventilation, exhaust, and temial unit
ID \quad System type in Non-domestic Building Services Compliance Guide

A	Local supply or extract ventilation units serving a single area

B Zonal supply system where the fan is remote from the zone
C Zonal extract system where the tan is remote from the zone
D Zonal supply and extract ventilation units serving a single room or zone with heating and heat recovery
E Local supply and extract ventilation system serving a single area with heating and heat recovery
F Other local ventilation units
G \quad Fan-assisted terminal VAV uni
H Fan coil units
1 Zonal extract system where the fan is remote from the zone with grease filter

\qquad Standard value

Core A LG restaurant dining | 60 | 22 | |
| :--- | :--- | :--- |
| | 80 | 22 | \qquad

General lighting and display lighting	Luminous efficacy [${ }^{\text {m/ } / \mathrm{W} \text {] }}$			
Zone name	Luminaire	Lamp	Display lamp	General lighting [w]
Standard value	60	60	22	
Core A LG restarant kitchen	-	80	-	593
Core ALG circ	-	80	-	188
Core ALG stairs	-	80	-	84
Core ALG refuse	80	-	-	52
Core A LG store	80	-	-	40
Core A LG bike store	80	-	-	91
Core CLG energy centre	80	-	-	1008
Core C LG sprinkler tank room	80	-	-	133
Core C LG comm room	80	-	-	136
Core CLG boiler room	80	-	-	149
Core CLG flues	80	-	-	110
Core C LG LV switch room	80	-	-	206
Core CLG gas meter	80	-	-	120
Core CLG substation	80	-	-	142
Core CLG circ 1	-	80	-	130
Core CLG stairs	-	80	-	83
Core CLG circ 2	-	80	-	102
Core CLG refuse	80	-	-	49
Core ELG water store	80	-	-	115
Core ELG bike store	80	-	-	133
Core E LG circ 1	-	80	-	166
Core ELG circ?	-	80	-	77
Core ELG stairs	-	80	-	86
Core ELG refuse	80	-	-	53
Core G LG stairs	-	80	-	76
Core G LG circ	-	80	-	150
Core G LG bike store	80	-	-	66
Core G LG refuse	80	-	\cdot	43
Core ILG stairs	-	80	-	75
Corel ILG circ	-	80	-	99
Core ILG bike store	80	-	-	81
Core ILG refuse	80	-	-	47
Core J LG stairs	-	80	-	64
Core JLG circ	-	80	-	156
Core JLG refuse	80	-	-	35
Core JLG bike store	80	-	-	89
Core LLG stairs	-	80	-	90
Core LLG refuse	80	-	-	45
Core LLG circ	-	80	-	157
Core LLG bike store	80	-	-	134
Core LLG LV switch room	80	-	-	252
Core LLG substation	80	-	-	188
Core NLG stairs	.	80	.	72

General lighting and display lighting	Luminous efficacy [lm/W]			
Zone name	Luminaire	Lamp	Display lamp	General lighting [W]
Standard value	60	60	22	
Core NLG circ	-	80	-	73
Core N LG bike store	80	-	-	64
Core NLG refuse	80	-	-	42
Core OLG stairs	-	80	-	61
Core OLG circ	-	80	-	61
Core OLG bike store	80	-	-	92
Core OLG refuse	80	-	-	32
Core QLG stairs	-	80	-	84
Core QLG circ	-	80	-	154
Core QLG bike store	80	-	-	133
Core QLG refuse	80	-	-	45
Core QLG LV switch room	80	-	-	243
Core Q LG substation	80	-	-	187
Core R LG stairs	-	80	-	78
Core RLG circ	-	80	-	112
Core R LG bike store	80	-	-	73
Core RLG refuse	80	-	-	38
Core RLG LV switch room	80	-	-	260
Core R LG substation	80	-	-	153
Core B LG supermarket display	-	80	22	5386
Core B LG supermarket store	80	-	-	180
Core BLG stairs	-	80	-	88
Core BLG circ1	-	80	-	113
Core BLG circ2	-	80	-	61
Core BLG bike store	80	-	-	48
Core BLG refuse	80	-	-	36
Core D LG stairs	-	80	-	92
Core DLG circ	-	80	-	159
Core DLG refuse	80	-	-	37
Core D LG bike store	80	-	-	192
Core DLG LV switchroom	80	-	-	311
Core DLG substation	80	-	-	277
Core FLG stairs	-	80	-	93
Core FLG circ	-	80	-	153
Core FLG refuse	80	-	-	36
Core F LG bike store	80	-	-	91
Core FLG LV swith	80	-	-	276
Core FLG substation	80	-	-	152
Core HLG stairs	-	80	-	93
Core HLG circ	-	80	-	155
Core HLG refuse	80	-	-	35
Core HLG bike store	80	-	-	105
Core KLG stairs	.	80	.	89

General lighting and display lighting	Luminous efficacy [${ }^{\text {m/W } / \mathrm{W} \text {] }}$			
Zone name	Luminaire	Lamp	Display lamp	General lighting [W]
Standard value	60	60	22	
Core KLG circ	-	80	-	143
Core KLG refuse	80	-	-	59
Core KLG bike store	80	-	-	59
Core MLG stairs	-	80	-	91
Core MLG circ	-	80	-	123
Core MLG refuse	80	-	-	46
Core M LG bike store	80	-	-	68
Core M LG water tank	80	-	-	137
Core P LG stairs	-	80	-	75
Core PLG circ	-	80	-	84
Core P LG refuse	80	-	-	70
Core P LG bike store	80	-	-	78
LG car park	-	80	-	24712
Core P G maintenance office	80	-	-	794
Core P G concierge	-	80	22	280
Core PG retail	-	80	22	847
Core M G workshare hub	80	-	-	1117
Core M G dry cleaner	-	80	22	2203
Core K G coffee shop	-	80	22	347
Core K G coffee shop food prep	-	80	-	332
Core K G hair dresser	-	80	22	1482
Core HG resindents lounge	-	80	22	296
Core HG resi meeting space	-	80	22	448
Core HG coffee shop kitchen	-	80	-	343
Core H G coffee shop	-	80	22	314
Core FG f itness centre	-	80	-	430
Core D G nursery	80	.	.	781

Criterion 3: The spaces in the building should have appropriate passive control measures
to limit solar gains
to limit solar gains

Zone	Solar gain limit exceeded? (\%)	Internal blinds used?
Core A LG restaurant dining	N/A	N/A
Core B LG supermarket display	N/A	NA
Core B LG supermarket store	N/A	N/A
Core P G maintenance office	NO (-60%)	YES
Core P G concierge	NO (-67%)	YES
Core P G retail	NO (-5%)	YES
Core M G workhare hub	NO (-73%)	YES
Core M G dry cleaner	NO $(--49 \%)$	YES
Core K G coffee shop	NO (-22%)	YES
Core K G hair dresser	NO (-37%)	YES
Core H G aresindents lounge	NO (-5%)	YES
Core H G resi meting space	NO (-73%)	YES
Core H G coffee shop	NO (-78%)	YES

Criterion 4: The performance of the building, as built, should be consistent with the
calculated BER
Separate submission
Criterion 5: The necessary provisions for enabling energy-efficient operation of the
building should be in place
Separate submission

EPBD (Recast): Consideration of alternative energy systems

| Were alternative energy systems considered and analysed as part of the design process? | YES |
| :--- | :--- | Is evidence of such assessment available as a separate submission? Are any such measures included in the proposed design? YES

Energy Consumption by End Use [kWh/m]		
	Actual	Notional
Heating	10.54	6.47
Cooling	2.51	3.1
Auxiliary	1.24	1.27
Lighting	17.42	20.81
Hot water	6.32	3.13
Equipment*	11.58	11.58
TOTAL**	32.05	34.77

Energy Production by Technology $\left[\mathrm{kWh} / \mathrm{m}^{2}\right]$

Energy \& CO_{2} Emissions Summary

Actual

Notional
Heating + cooling demand $\left[\mathrm{MJ} / \mathrm{m}^{2}\right]$ Primary energy" $\left[\mathrm{kWh} / \mathrm{m}^{2}\right] \quad 67$ Total emissions [kg/m] 67.21
11.5

HVAC Systems Performance

Actual	13.1	0	8.5	0	1.7	0.43	0	0.45	0
Notional	10.2	0	3.4	0	2.3	0.82	0	\cdots	\cdots

Actual

Notional
[ST] Central hea

| Notional 27.3 |
| :--- | :--- | :--- |

| Actual | 0 |
| :---: | :---: | :---: | :---: |

Actual	2.4	230.4	1.6	13.5	4.4	0.43	4.75
Notional	6.4	200	2.2	15.4	4.4	0.82	3.6

[ST] Split or multi-split system, [HS] LTHW boiler, [HFT] Natural Gas, [CFT] Electricity | Actual | 1.4 | 105.5 | 0.9 | 6.2 | 6.9 | 0.43 | 4.75 | 0.45 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Notional | 8.7 | 102.5 | 2.9 | 7.9 | 6 | 0.82 | 3.6 | \ldots | \ldots | [ST] Split or multi-split system, [HS] LTHW boiler, [HFT] Natural Gas, [CFT] Electricity

 \begin{tabular}{l}
[ST] Split or multi-split system, [HS] LTHW boiler, [HFT] Natural Gas, [CFT] Electricity

| Actual | 3 | 238.1 | 1.9 | 13.9 | 4.4 | 0.43 | 4.75 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

\hline N

 [ST] Split or mult-split system, [HS] LTHW boiler, [HFT] Natural Gas, [CFT] Electricity

[ST] Split or mult-split system, [HS] LTHW boiler, [HFT] Natural Gas, [CFT] Electricity

\hline | Actual | 0.1 | 297.5 | 0.1 | 17.4 | 6.8 | 0.43 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Notional | 4.8 | 244.4 | 1.6 | 18.75 | 0.45 | 5 |

\hline [ST] Split or multi-split system, [HS] LTHW boiler, [HFT] Natural Gas, [CFT] Electricity

\hline
\end{tabular} [ST] Split or mult-split system, [HS] LTHW boiler, [HFT] Natural Gas, [CFT] Electricity

Actual	9.3	204.3	6.1	12	5	0.43	4.75	0.45											
Notional	26.5	156.8	9	12.1	4.4	0.82	3.6	\ldots	[ST] Split or multi-spirit system, [MS] LTWW boiler, [HFT] Nawrar	Actual	12.1	528.1	7.9	30.9	4.3	0.43	4.75	0.45	5
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---										
Notional	13.9	537.9	4.7	41.5	3.8	0.82	3.6	\ldots	\ldots	[ST] No Heating or Cooling									

Key to terms

```
Heat dem[MJ/2]
Coatcon[kWh/m2]
Aux con (kWW/m
M
l
```

Key Features
The BCO can give particular attention to items with specifications that are better than typically expected.
Building fabric

Air Permeability \qquad 5

11．2 SAP Compliance Calculations

As a part of our BS EN ISO 14001 accreditation，we make a conscious effort to reduce the amount of printing and therefore reduce our carbon impact on the environment．For this reason，we have included a summary of all SAP results in this appendix．However，we are happy to provide all DER and TER worksheets as hard copies on request．

Dwelling		Lean			Clean		Green			FEE			$\begin{aligned} & \text { n } \\ & 0 \\ & \frac{0}{0} \\ & 0 \\ & \stackrel{U}{0} \\ & \frac{0}{J} \\ & 0.0 \\ & 5 \\ & \hline \end{aligned}$
$\stackrel{\text { 荧 }}{5}$		$\stackrel{\text { 㞻 }}{\Perp}$	$\stackrel{\text { 㞻 }}{\square}$		㐍		$\stackrel{\text { 㞻 }}{\square}$	$$		$\stackrel{\text { 山 }}{\stackrel{\sim}{u}}$	$\begin{aligned} & \text { 山 } \\ & \stackrel{\rightharpoonup}{\Delta} \end{aligned}$		
1A1	87.5	18.8	20.1	6．8\％	12.3	－34．8\％	11.1	－40．8\％	Y	58.9	63.4	7．6\％	18.0
1A2	87.5	17.8	17.6	－1．1\％	11.0	－38．3\％	9.8	－44．7\％	Y	52.0	52.3	0．6\％	18.0
1B1	87.5	16.5	16.5	－0．2\％	10.3	－37．4\％	9.2	－44．2\％	Y	47.2	49.3	4．4\％	18.0
1B2	87.5	15.4	13.5	－12．1\％	8.8	－42．9\％	7.6	－50．2\％	Y	39.7	36.2	－8．8\％	18.0
$1 \mathrm{C1}$	87.5	18.8	20.2	7．5\％	12.3	－34．4\％	11.2	－40．4\％	Y	58.9	63.9	8．5\％	18.0
1 C 2	87.5	17.8	17.7	－0．2\％	11.0	－37．9\％	9.9	－44．2\％	Y	52.0	52.9	1．7\％	18.0
2A1	50.9	21.1	21.4	1．3\％	13.0	－38．3\％	11.1	－47．5\％	Y	56.1	59.4	5．9\％	20.6
2B1	50.9	18.7	17.4	－6．9\％	10.9	－41．8\％	9.0	－52．1\％	Y	43.8	43.8	0．0\％	20.6
2C1	50.9	21.1	21.6	2．0\％	13.1	－37．9\％	11.2	－47．1\％	Y	56.1	60.0	7．0\％	20.6
3A1	74.3	20.2	21.1	4．1\％	12.8	－36．6\％	11.5	－43．2\％	Y	62.0	64.2	3．5\％	18.9
3B1	74.3	17.9	17.1	－4．3\％	10.7	－40．1\％	9.4	－47．5\％	Y	50.1	49.1	－2．0\％	18.9
3 Cl	74.3	20.2	21.2	4．8\％	12.9	－36．2\％	11.6	－42．8\％	Y	62.0	64.7	4．4\％	18.9
4A1	56.6	20.0	21.1	5．3\％	12.8	－35．8\％	11.1	－44．5\％	Y	53.4	60.0	12．4\％	20.1
5A1	91.8	16.4	16.0	－2．2\％	10.1	－38．2\％	9.0	－44．7\％	Y	45.6	47.2	3．5\％	17.7
5B1	91.8	14.0	12.1	－13．4\％	8.0	－42．5\％	6.9	－50．2\％	Y	33.4	31.3	－6．3\％	17.7
5C1	91.8	16.4	16.1	－1．3\％	10.2	－37．7\％	9.1	－44．2\％	Y	45.6	47.8	4．8\％	17.7
6A1	87.3	18.2	18.0	－0．7\％	11.2	－38．1\％	10.1	－44．3\％	Y	53.4	54.5	2．1\％	18.0
7A1	72.2	18.8	21.4	13．8\％	13.0	－30．8\％	11.7	－38．0\％	Y	54.1	68.6	26．8\％	19.0
7A2	72.2	18.0	20.1	11．5\％	12.3	－31．7\％	10.9	－39．3\％	Y	49.9	63.4	27．1\％	19.0
7 B 1	72.2	16.5	18.2	10．3\％	11.3	－31．5\％	10.0	－39．8\％	Y	42.4	56.3	32．8\％	19.0
7B2	72.2	15.8	17.0	8．0\％	10.7	－32．3\％	9.3	－41．0\％	Y	38.4	51.3	33．6\％	19.0
7 Cl	72.2	18.8	21.5	14．5\％	13.1	－30．4\％	11.7	－37．7\％	Y	54.1	69.1	27．7\％	19.0
7 C 2	72.2	18.0	20.2	12．1\％	12.4	－31．3\％	11.0	－38．9\％	Y	49.9	63.8	27．9\％	19.0
8A1	51.1	20.1	20.0	－0．7\％	12.3	－39．0\％	10.3	－48．6\％	Y	51.2	53.9	5．3\％	20.6
8A2	51.1	22.0	22.8	3．5\％	13.8	－37．4\％	11.8	－46．2\％	Y	60.8	64.7	6．4\％	20.6
8B1	51.1	17.8	16.1	－9．1\％	10.2	－42．5\％	8.3	－53．3\％	Y	39.0	38.4	－1．5\％	20.6
$8 \mathrm{C1}$	51.1	20.1	20.1	0．0\％	12.4	－38．6\％	10.4	－48．2\％	Y	51.2	54.5	6．4\％	20.6
8C2	51.1	22.0	22.9	4．2\％	13.9	－37．1\％	11.9	－45．8\％	Y	60.8	65.2	7．2\％	20.6
9A1	87.8	18.1	18.7	3．0\％	11.5	－36．5\％	10.4	－42．7\％	Y	55.7	57.5	3．2\％	17.9
9B1	87.8	15.9	14.9	－6．4\％	9.5	－40．4\％	8.4	－47．4\％	Y	44.2	42.6	－3．6\％	17.9
9 Cl	87.8	18.1	18.8	3．7\％	11.6	－36．1\％	10.5	－42．3\％	Y	55.7	58.0	4．1\％	17.9

10A1	89.6	17.1	16.5	－3．6\％	10.4	－39．2\％	9.3	－45．6\％	Y	48.5	48.7	0．4\％	17.8
10B1	89.6	14.6	12.3	－15．5\％	8.2	－44．0\％	7.1	－51．5\％	Y	35.8	32.2	－10．1\％	17.8
10C1	89.6	17.1	16.7	－2．7\％	10.5	－38．7\％	9.4	－45．1\％	Y	48.5	49.3	1．6\％	17.8
11A1	67.0	19.9	19.9	0．1\％	12.2	－38．6\％	10.8	－46．0\％	Y	56.3	57.6	2．3\％	19.4
11B1	67.0	17.4	15.7	－9．9\％	10.0	－42．8\％	8.5	－51．3\％	Y	43.7	41.2	－5．7\％	19.4
11 Cl	67.0	19.9	20.1	0．9\％	12.3	－38．2\％	10.8	－45．6\％	Y	56.3	58.2	3．4\％	19.4
12A1	73.3	19.5	19.9	2．2\％	12.2	－37．3\％	10.9	－44．2\％	Y	57.9	59.3	2．4\％	19.0
12B1	73.3	17.2	16.1	－6．6\％	10.2	－40．9\％	8.8	－48．8\％	Y	46.2	44.2	－4．3\％	19.0
12C1	73.3	19.5	20.1	2．9\％	12.3	－36．9\％	11.0	－43．8\％	Y	57.9	59.8	3．3\％	19.0
13A1	90.6	18.4	18.7	1．7\％	11.5	－37．4\％	10.4	－43．3\％	Y	57.5	58.0	0．9\％	17.7
13B1	90.6	16.1	14.8	－8．1\％	9.4	－41．4\％	8.3	－48．2\％	Y	45.7	42.8	－6．3\％	17.7
13C1	90.6	18.4	18.8	2．5\％	11.6	－36．9\％	10.5	－42．9\％	Y	57.5	58.6	1．9\％	17.7
14A1	74.3	18.6	18.3	－1．5\％	11.4	－38．9\％	10.0	－46．0\％	Y	53.5	53.7	0．4\％	18.9
14B1	74.3	16.3	14.4	－11．6\％	9.3	－43．1\％	7.9	－51．3\％	Y	41.5	38.1	－8．2\％	18.9
14C1	74.3	18.6	18.5	－0．7\％	11.4	－38．5\％	10.1	－45．6\％	Y	53.5	54.2	1．3\％	18.9
15A1	65.8	20.1	20.3	0．9\％	12.4	-38.3%	10.9	－45．8\％	Y	58.2	59.4	2．1\％	19.5
15B1	65.8	17.8	16.3	－8．4\％	10.2	－42．3\％	8.7	－50．7\％	Y	46.1	43.6	－5．4\％	19.5
16A1	103.4	18.0	18.1	0．4\％	11.1	－38．1\％	10.2	－43．4\％	Y	57.9	58.4	0．9\％	16.8
16B1	103.4	15.6	13.9	－10．7\％	8.9	－42．8\％	8.0	－48．9\％	Y	45.7	42.4	－7．2\％	16.8
17A1	61.5	19.9	19.8	－0．5\％	12.2	－38．9\％	10.6	－46．9\％	Y	54.7	56.2	2．7\％	19.8
17B1	61.5	17.5	15.7	－10．2\％	10.0	－43．0\％	8.4	－52．2\％	Y	42.4	40.2	－5．2\％	19.8
17C1	61.5	19.9	20.0	0．3\％	12.3	－38．5\％	10.7	－46．5\％	Y	54.7	56.8	3．8\％	19.8
18A1	98.9	18.2	19.2	5．4\％	11.8	－35．5\％	10.8	－40．9\％	Y	58.8	62.0	5．4\％	17.1
18B1	98.9	15.8	15.4	－2．5\％	9.7	－38．5\％	8.7	－44．8\％	Y	46.9	47.4	1．1\％	17.1
18C1	98.9	18.2	19.4	6．2\％	11.8	－35．1\％	10.8	－40．5\％	Y	58.8	62.5	6．3\％	17.1
19A1	59.3	18.8	18.3	－2．3\％	11.4	－39．4\％	9.7	－48．2\％	Y	47.8	48.9	2．3\％	19.9
19B1	59.3	16.5	14.6	－11．5\％	9.4	－43．1\％	7.7	－53．2\％	Y	35.8	33.2	－7．3\％	19.9
19C1	59.3	18.8	18.5	－1．5\％	11.5	－38．9\％	9.8	－47．8\％	Y	47.8	49.5	3．6\％	19.9
20A1	89.5	16.1	15.5	－3．9\％	9.9	－38．8\％	8.8	－45．6\％	Y	43.5	44.8	3．0\％	17.8
20B1	89.5	13.7	11.6	－15．1\％	7.8	－43．0\％	6.7	－51．0\％	Y	31.1	28.6	－8．0\％	17.8
20C1	89.5	16.1	15.6	－3．0\％	10.0	－38．3\％	8.9	－45．1\％	Y	43.5	45.4	4．4\％	17.8
21A1	46.2	21.8	22.0	1．1\％	13.4	－38．5\％	11.3	－48．3\％	Y	55.1	58.7	6．5\％	21.0
2181	46.2	19.4	18.0	－7．1\％	11.3	－41．9\％	9.1	－52．9\％	Y	43.0	42.9	－0．2\％	21.0
21 Cl	46.2	21.8	22.1	1．8\％	13.5	－38．1\％	11.3	－47．9\％	Y	55.1	59.2	7．4\％	21.0
22A1	97.8	16.8	17.2	2．2\％	10.7	－36．5\％	9.7	－42．5\％	Y	51.7	53.5	3．5\％	17.2
22A2	97.8	16.4	16.4	0．0\％	10.3	－37．5\％	9.3	－43．6\％	Y	49.6	50.2	1．2\％	17.2
22B1	97.8	14.6	13.6	－6．4\％	8.8	－39．7\％	7.8	－46．7\％	Y	40.2	39.3	－2．2\％	17.2
22B2	97.8	14.2	12.7	－10．5\％	8.3	－41．6\％	7.2	－48．8\％	Y	38.0	35.0	－7．9\％	17.2
22 Cl	97.8	16.8	17.3	3．0\％	10.8	－36．1\％	9.7	－42．1\％	Y	51.7	54.0	4．4\％	17.2
$22 \mathrm{C2}$	97.8	16.4	16.6	0．9\％	10.4	－37．0\％	9.3	－43．1\％	Y	49.6	50.8	2．4\％	17.2
23B1	83.6	15.8	14.9	－5．6\％	9.5	－39．8\％	8.3	－47．3\％	Y	42.3	42.1	－0．5\％	18.2
24A1	117.1	17.6	19.3	9．6\％	11.7	-33.3%	10.9	－38．1\％	Y	59.5	66.0	10．9\％	15.9

－

2481	117.1	15.2	15.5	2.3\%	9.7	-36.0\%	8.9	-41.5\%	Y	47.4	51.7	9.1\%	15.9
2461	117.1	17.6	19.4	10.4\%	11.8	-32.9\%	11.0	-37.7\%	Y	59.5	66.6	11.9\%	15.9
25 Al	40.6	21.5	21.5	0.1\%	13.1	-38.9\%	10.7	-50.2\%	Y	49.6	53.6	8.1\%	21.8
2581	40.6	19.3	18.1	-5.8\%	11.3	-41.2\%	8.9	-53.8\%	Y	38.0	39.4	3.7\%	21.8
25 Cl	40.6	21.5	21.6	0.7\%	13.2	-38.6\%	10.8	-49.9\%	Y	49.6	54.1	9.1\%	21.8
2681	98.3	16.2	15.3	-5.3\%	9.7	-40.2\%	8.7	-46.4\%	Y	48.5	45.9	-5.4\%	17.2
26 Cl	98.3	18.4	19.3	4.7\%	11.8	-36.0\%	10.8	-41.4\%	Y	60.1	61.3	2.0\%	17.2
27 Cl	62.8	18.9	19.4	2.8\%	11.9	-36.8\%	10.4	-45.1\%	Y	50.8	54.2	6.7\%	19.7
2781	62.8	16.7	15.8	-5.0\%	10.0	-39.8\%	8.5	-49.2\%	Y	39.4	39.8	1.0\%	19.7
$28 \mathrm{C1}$	67.6	17.4	17.4	-0.1\%	10.8	-37.7\%	9.4	-46.1\%	Y	44.7	48.1	7.6\%	19.3

G_BS 021	Bedroom	Inner	110	33	32	8	Pass
G_LK2_021	Living Room / Kitchen	Inner	59	16	N/A	N/A	Pass
I_BD_021	Bedroom	Inner	110	23	32	7	Pass
LBD_022	Bedroom	Inner	110	30	32	10	Pass
I_BD_023	Bedroom	Inner	110			7	
I_BD_024	Bedroom	Outer	110	79	32	37	Fail
L_BD_025	Bedroom	Outer	110	47	32	28	Pass
L_BD_026	Bedroom	Outer	110	29	32	25	Pass
1 BD 027	Bedroom	Outer	110	32	32	27	Pass
I_LK1021	Living Room / Kitchen	Inner	59	73	N/A	N/A	Fail
1 LK2. 021	Living Room / Kitchen	Inner	59	38	N/A	N/A	Pass
1-LK2 022	Living Room / Kitchen	Inner	59	26	N/A	N/A	${ }_{\text {Pass }}$
I LK2 023	Living Room / Kitchen	Inner	59	26	N/A	N/A	Pass
J_BD_021	Bedroom	Inner	110	70	32	7	Pass
J_BD_0210	Bedroom	Outer	110	158	32	59	Fail
J_BD_0211	Bedroom	Outer	110	74	32	39	Fail
J_BD_022	Bedroom	Inner	110	30	32	10	Pass
J_BD_023	Bedroom	Inner	110	46	32	8	Pass
J_BD 024	Bedroom	Inner	110	86	32	7	Pass
J_BD_025	Bedroom	Inner	110	42	32	11	Pass
$\begin{array}{r}\text { J BD } 026 \\ \hline \text { J BD } 027\end{array}$	Bedroom	Outer Outer	$\frac{110}{110}$	85 116	32 32	50 57	$\stackrel{\text { Fail }}{\text { Fail }}$
J_BD_028	Bedroom	Outer	110	187	32	60	Fail
${ }^{\text {J BD }} \mathbf{}$ O29	Bedroom	Outer	110	67	32	58	Fail
J_LK1 O21	Living Room / Kitchen	Inner	59	31	N/A	N/A	Pass
J_LK2_021	Living Room / Kitchen	Inner	59	25	N/A	N/A	Pass
J_LK2.022	Living Room / Kitchen	Inner	59	25	N/A	N/A	Pass
J_LK3 021	Living Room / Kitchen	Inner	59	52	N/A	N/A	Pass
J_LK3 022	Living Room / Kitchen	Inner	59	23	N/A	N/A	Pass
K_BD_021	Bedroom	Outer	110	518	32	142	Fail
K_BD_022	Bedroom	Outer	110	155	32	111	Fail
K BD 023	Bedroom	Outer	110	229	32	132	Fail
K_BD_024	Bedroom	Outer	110	907	32	188	Fail
K BD.025	Bedroom	Inner	110	138	32	9	Fail
K ${ }^{\text {K BD_O26 }}$	Bedroom	Inner	110	93	32 32		Pass
K K BS 0271	Bedroom	Inner	110 110	187	32	${ }_{8}$	Pail
K_LK1_021	Living Room / Kitchen	Inner	59	58	N/A	N/A	Pass
K LK1 022	Living Room / Kitchen	Inner	59	88	N/A	N/A	Fail
K_LK2_021	Living Room / Kitchen	Inner	59	72	N/A	N/A	Fail
K_LK2.022	Living Room / Kitchen	Inner	59	82	N/A	N/A	Fail
K_LK2.023	Living Room / Kitchen	Inner	59	132	N/A	N/A	Fail
L.BD.021	Bedroom	Outer	110	649	32	82	Fail
L_BD_022	Bedroom	Outer	110	303	32	75	Fail
L.BD-023	Bedroom	Outer	110	361	32	89	Fail
L.BD.024	Bedroom	Outer	110	863	32	99	Fail
L LK2 021	Living Room / Kitchen	Inner	59	62	N/A	N/A	Fail
$\frac{\text { L_LK2 }{ }^{\text {M }} \text { M } 022}{}$	Living Room/ Kitchen	$\frac{\text { Inner }}{\text { Outer }}$	59 110	58	N/A	N/A	Pass
M BD_0210	Bedroom	Inner	110	104	32	16	Pass
M_BD_0211	Bedroom	Inner	110	43	32	14	Pass
M_BD-02 12	Bedroom	Outer	110	18	32	29	Pass
M_BD_022	Bedroom	Outer	110	46	32	53	Fail
M_BD_023	Bedroom	Outer	110	45	32	53	Fail
M BD 024	Bedroom	Outer	110	18	32	30	Pass
$M B D$ O25 M BD 026	Bedroom	Outer	110	34	32	45	Fail
M BD 026 M BD 027	Bedroom	Outer	110 110	39 38	32 32	50	$\stackrel{\text { Fail }}{\text { Fail }}$
M_BD_028	Bedroom	Inner	110	69	32	11	Pass
M_BD_029	Bedroom	Inner	110	43	32	11	Pass
M_LK1 021	Living Room / Kitchen	Outer	59	15	N/A	N / A	Pass
M LK1 022	Living Room / Kitchen	Inner	59	36	N/A	N/A	Pass
M_LK1 023	Living Room / Kitchen	Inner	59	61	N/A	N/A	Fail
M LK1 024	Living Room / Kitchen	Inner	59	82	N/A	N/A	Fail
M LK2 021	Living Room / Kitchen	Inner	59	25	N/A	N/A	Pass
M LK3 021	Living Room / Kitchen	Outer	59	30	N/A	N/A	Pass
M LK3 -022	Living Room / Kitchen	Inner	59	45	N/A	N/A	Pass
N BD 021 N BD 022	Bedroom	Inner	110	72			Pass
$\frac{\mathrm{N}}{\mathrm{N}} \mathrm{BD}$ B 023	Bedroom	Inner	110	34	32	10	Pass
N_BD_024	Bedroom	Inner	110	94	32	8	Pass
N BD. 025	Bedroom	Outer	110	117	32	49	Fail
N_BD_026	Bedroom	Outer	110	216	32	65	Fail
N_BD_O27	Bedroom	Outer	110	92	32	60	Fail
N_LK2 021	Living Room / Kitchen	Inner	59	25	N/A	N/A	Pass
N_LK2 022	Living Room / Kitchen	Inner	59	47	N/A	N/A	Pass
$\frac{\mathrm{NLLK3} 021}{\text { OBD } 021}$	Living Room / Kitchen	Inner	59	32	N/A	N/A	Pass
	Bedroom	Inner Inner	110 110	73 30	32 32	7 10	${ }_{\text {Pass }}$
O_BD_023	Bedroom	Inner	110	23	32	7	Pass
OBD 024	Bedroom	Outer	110	47	32 32	28	Pass
O-BD 025	Bedroom	Outer	110	45	32	29	Pass
O. LK2 021	Living Room / Kitchen	Inner	59	23	N/A	N/A	Pass

D_BD_027	Bedroom	Outer	110	48	32	35	Fail
D. BD.028	Bedroom	Outer	110	125	32	45	Fail
D_BD_029	Bedroom	Outer	110	35	32	24	Pass
D_BS_021	Bedroom	Inner	110	139	32	40	Fail
D. LK1_021	Living Room / Kitchen	Outer	59	16	N/A	N/A	Pass
D_LK1022	Living Room / Kitchen	Inner	59	46	N/A	N/A	Pass
D_LK1_023	Living Room / Kitchen	Inner	59	23	N/A	N/A	Pass
D_LK2_021	Living Room / Kitchen	Inner	59	31	N/A	N/A	Pass
D LK2 022	Living Room / Kitchen	Inner	59	52	N/A	N/A	Pass
D_LK2_023	Living Room / Kitchen	Inner	59	51	N/A	N/A	Pass
D LK3 021	Living Room / Kitchen	Outer	59	31	N/A	N/A	Pass
D.LK3.022	Living Room / Kitchen	Outer	59	46	N/A	N/A	Pass
E.BD.021	Bedroom	Outer	110	48	32		Pass
E.BD_022	Bedroom	Inner	110	46	32	44	Fail
E_BD-023	Bedroom	Inner	110	31	32	47	Fail
E_LK1_021	Living Room / Kitchen	Outer	59	31	N/A	N/A	Pass
E_LK2_021	Living Room / Kitchen	Inner	59	37	N/A	N/A	Pass
G_BD_021	Bedroom	Inner	110	36	32	23	Pass
G BS 021	Bedroom	Inner	110	39	32	24	Pass
G_LK2_021	Living Room / Kitchen	Inner	59	19	N/A	N/A	Pass
- BD 021	Bedroom	Inner	110	22	32	12	Pass
I, BD.022	Bedroom	Outer	110	37	32	29	Pass
I_BD_023	Bedroom	Outer	110	75	32	24	Pass
I BD 024	Bedroom	Outer	110	77	32	39	Fail
I_BD_025	Bedroom	Outer	110	47	32	29	Pass
I_BD.026	Bedroom	Outer	110	30	32	27	Pass
- BD.027	Bedroom	Inner	110	34	32	30	Pass
I_LK1 021	Living Room / Kitchen	Inner	59	69	N/A	N/A	Fail
I_LK2 021	Living Room / Kitchen	Inner	59	40	N/A	N/A	Pass
I_LK2_022	Living Room / Kitchen	Inner	59	27	N/A	N/A	Pass
I_LK2_023	Living Room / Kitchen	Inner	59	31	N/A	N/A	Pass
${ }^{\text {J B B }} 021$	Bedroom	Inner	110	68	32	16	Pass
${ }^{\text {J_BD_O2 }}$ - ${ }^{\text {a }}$	Bedroom	Outer	110	155	32	60	Fail
	Bedroom	Inner Inner	110	$\begin{array}{r}73 \\ \hline\end{array}$	32	42	$\stackrel{\text { Fail }}{ }$
J_BD_023	Bedroom	Inner	110	45	32	28	Pass
J_BD_024	Bedroom	Outer	110	83	32	27	Pass
J_BD_025	Bedroom	Inner	110	47	32	34	Fail
J_BD_026	Bedroom	Inner	110	88	32	55	Fail
J_BD_027	Bedroom	Outer	110	114	32	61	Fail
J_BD_028	Bedroom	Inner	110	183	32	63	Fail
J_BD_029	Bedroom	Inner	110	69	32	59	Fail
J LK1 021	Living Room / Kitchen	Outer	59	37	N/A	N/A	Pass
J_LK2_021	Living Room / Kitchen	Outer	59	25	N/A	N/A	Pass
J LK2 ${ }^{\text {J }}$ O22	Living Room / Kitchen	Inner	59	26	N/A	N/A	
${ }^{\text {J_LK3 }}$ - 021	Living Room / Kitchen	Inner	59	55	N/A	N/A	Pass
${ }^{\mathrm{J}} \mathrm{LK3} 3022$	Living Room / Kitchen	Inner	59	23	N/A	N/A	Pass
K K BD. 021	Bedroom	Inner	110	514	32	144	Fail
K BD_023	Bedroom	Outer	110	229	32	135	Fail
K_BD_024	Bedroom	Inner	110	891	32	187	Fail
K_BD_025	Bedroom	Inner	110	132	32	24	Fail
K_BD_026	Bedroom	Inner	110	85	32	30	Pass
K BD-027	Bedroom	Inner	110	176	32	23	Fail
K BS 021	Bedroom	Inner	110	83	32	28	Pass
K LK1. 021	Living Room / Kitchen	Outer	59	55	N/A	N/A	Pass
K LK1022	Living Room / Kitchen	Outer	59	87	N/A	N/A	Fail
K LK22.021	Living Room / Kitchen	Outer	59	74	N/A	N/A	Fail
$\frac{\mathrm{K} \text { L L 2 } 2022}{}$	Living Room / Kitchen	Inner	59	82	N/A	N/A	Fail
LLBD.021	Bedroom	Inner	110	646	32	86	Fail
L-BD_022	Bedroom	Inner	110	300	32	77	Fail
L_BD_023	Bedroom	Inner	110	362	32	90	Fail
L-BD-024	Bedroom	Outer	110	856	32	104	Fail
L_LK2_021	Living Room / Kitchen	Inner	59	61	N/A	N/A	Fail
L LK2 022	Living Room / Kitchen	Inner	59	60	N/A	N/A	Fail
M BD-021	Bedroom	Outer	110	36	32	44	Fail
M BD 0210	Bedroom		110	104	32	43	
$\frac{M \text { BD } 0211}{\text { M BD } 0212}$	Bedroom	Inner	110	44	32	36	Fail
M BD 022	Bedroom	Inner	110	20	32	33 53	${ }_{\text {Fail }}$
M_BD_023	Bedroom	Outer	110	45	32	53	Fail
M_BD_024	Bedroom	Inner	110	18	32	30	Pass
M_BD_025	Bedroom	Inner	110	34	32	45	Fail
M BD_026 M BD 027	Bedroom	Inner	110	40	32	51	Fail
M ${ }^{\text {M BD }}$ - 0228	Bedroom	Inner Inner	110 110	40 63	32	49	${ }_{\text {Fail }}$
M BD-029	Bedroom	Outer	110	45	32	26	Pass
M LK1 021	Living Room / Kitchen	Outer	59	15	N/A	N/A	Pass
$\frac{M \text { LK1 } 022}{}$	Living Room / Kitchen	Outer	59	37	N/A	N/A	Pass
$\frac{M \text { LK1 } 023}{\text { M LK1 } 024}$	Living Room / Kitchen	Outer	59	58	N/A	N/A	Pass
$\frac{M \text { LK1 } 024}{\text { M LK2 } 021}$	Living Room / Kitchen	Inner	59	81	N/A	N/A	Fail
$\frac{\text { M LL2 } 021}{\text { M LK3 } 021}$	Living Room / Kitchen	Inner	59	29	N/A	N/A	Pass

M_LK3_022	Living Room / Kitchen	Inner	59	43	N/A	N/A	Pass
N_BD_021	Bedroom	Inner	110	68	32	16	Pass
N_BD_022	Bedroom	Inner	110	43	32	26	Pass
N_BD_023	Bedroom	Outer	110	39	32	34	Fail
N_BD-024	Bedroom	Outer	110	88	32	28	Pass
N_BD_025	Bedroom	Outer	110	117	32	53	Fail
N_BD_026	Bedroom	Outer	110	215	32	66	Fail
N_BD_027	Bedroom	Inner	110	91	32	60	Fail
N LK2 021	Living Room / Kitchen	Inner	59	22	N/A	N/A	Pass
N_LK2.022	Living Room / Kitchen	Outer	59	43	N/A	N/A	Pass
N LK3 021	Living Room / Kitchen	Inner	59	35	N/A	N/A	Pass
O_BD.021	Bedroom	Inner	110	70	32	16	Pass
O_BD_022	Bedroom	Inner	110	35	32	27	Pass
O_BD_023	Bedroom	Inner	110	25	32	15	Pass
O_BD.024	Bedroom	Inner	110	46	32	28	Pass
O_BD_025	Bedroom	Outer	110	44	32	31	Pass
O_LK1_021	Living Room / Kitchen	Inner	59	59	N/A	N/A	Pass
0_LK2_021	Living Room / Kitchen	Inner	59	23	N/A	N/A	Pass
O-LK2.022	Living Room / Kitchen	Inner	59	17	N/A	N/A	Pass
P_BD_021	Bedroom	Outer	110	23	32	21	Pass
P.BD 022	Bedroom	Outer	110	29	32	41	Fal
P.BD_023	Bedroom	Outer	110	58	32	33	Fail
P_BD_024	Bedroom	Inner	110	127	32	28	Fail
P. BD 025	Bedroom	Inner	110	61	32	24	Pass
P_BD_026	Bedroom	Inner	110	162	32	23	Fail
P_BD_027	Bedroom	Inner	110	78	32	24	Pass
P_BD_028	Bedroom	Inner	110	32	32	38	Fail
P_BD.029	Bedroom	Inner	110	10	32	16	Pass
P_LK1_021	Living Room / Kitchen	Outer	59	35	N/A	N/A	Pass
P_LK1_022	Living Room / Kitchen	Outer	59	54	N/A	N/A	Pass
P_LK2_021	Living Room / Kitchen	Outer	59	42	N/A	N/A	Pass
P LK2.022	Living Room / Kitchen	Outer	59	46	N/A	N/A	Pass
P_LK3_021	Living Room / Kitchen	Outer	59	120	N/A	N/A	Fail
R. BD 021	Bedroom	Inner	110	69	32	17	
R_BD_0210	Bedroom	Outer	110	220	32	58	Fail
R_BD_0211	Bedroom	Inner	110	65	32	27	Pass
R_BD_022	Bedroom	Inner	110	35	32	28	Pass
R_BD_023	Bedroom	Inner	110	71	32	39	Fail
R_BD_024	Bedroom	Outer	110	90	32	30	Pass
R_BD_025	Bedroom	Outer	110	56	32	49	Fail
R_BD_026	Bedroom	Outer	110	168	32	63	Fail
R_BD_027	Bedroom	Outer	110	99	32	69	Fail
R BD 028	Bedroom	Inner	110	163	32	57	Fail
R_BD_029	Bedroom	Inner	110	194	32	58	Fail
R_LK1 221	Living Room / Kitchen	Inner	59	37	N/A	N/A	Pass
R_LK2_021	Living Room / Kitchen	Inner	59	21	N/A	N/A	Pass
R LK2022	Living Room / Kitchen	Inner	59	29	N/A	N/A	Pass
R LK3 021	Living Room / Kitchen	Inner	59	28	N/A	N/A	Pass
R.LK3, 022	Living Room / Kitchen						

1.3.2 Domestic Overheating Results DSY2 \& DSY3

The results for the overheating assessment of the domestic areas using the London Heathrow DSY2 and DSY3, 2020 s, high emissions, 50% percentile weather file are presented in the tables below.

	DSY2		DSY3	
	Fail	Pass	Fail	Pass
Ground				
Bedrooms				
Inner	100\%	0\%	100\%	0\%
Outer	100\%	0\%	100\%	0\%
Living rooms/Kitchens				
Inner	90\%	10\%	100\%	0\%
Outer	77\%	23\%	100\%	0\%
Levels 01 to top				
Bedrooms				
Inner	54\%	46\%	98\%	2\%
Outer	100\%	0\%	100\%	0\%
Living rooms/Kitchens				
Inner	83\%	17\%	100\%	0\%
Outer	77\%	23\%	100\%	0\%
Total	87\%	13\%	100\%	0\%

J_LK1_021	Living Room / Kitchen		59	124	N/A		
J_LK2_021	Living Room / Kitchen	9	59	87	N/A	N/A	Fail
J_LK2_022	Living Room / Kitchen	9	59	102	N/A	N/A	Fail
J_LK3_021	Living Room / Kitchen	9	59	156	N/A	N/A	Fail
J_LK3_022	Living Room / Kitchen	9	59	85	N/A	N/A	Fail
K_BD_021	Bedroom	10	110	588	32		Fail
K_BD_022	Bedroom	10	110	294	32	183	Fail
K_BD_023	Bedroom	10	110	349	32	213	Fail
K_BD-024	Bedroom	10	110	925	32	249	Fail
K_BD_025	Bedroom	10	110	203	32	82	Fail
K_BD_026	Bedroom	10	110	168	32	90	Fail
K_BD_027	Bedroom	10	110	234	32	80	Fail
K_BS_021	Bedroom	10	110	169	32	87	Fail
K_LK1_021	Living Room / Kitchen	10	59	142	N/A	N/A	Fail
K_LK1_022	Living Room / Kitchen	10	59	164	N/A	N/A	Fail
K_LK2_021	Living Room / Kitchen	10	59	167	N/A	N/A	Fail
K_LK2_022	Living Room / Kitchen	10	59	162	N/A	N/A	Fail
K_LK2_023	Living Room / Kitchen	10	59	218	N/A	N/A	Fail
L_BD_021	Bedroom	12	110	686	32	168	Fail
L_BD_022	Bedroom	12	110	371	32	166	Fail
L_BD_023	Bedroom	12	110	421	32	188	Fail
L_BD-024	Bedroom	12	110	863	32	189	Fail
L_LK2_021	Living Room / Kitchen	12	59	163	N/A	N/A	Fail
L_LK2.022	Living Room / Kitchen	12	59	160	N/A	N/A	Fail
M_BD_021	Bedroom	4	110	143	32	135	Fail
M_BD_0210	Bedroom	4	110	192	32	119	Fail
M_BD_02 11	Bedroom	4	110	147	32	114	Fail
M_BD_0212	Bedroom	4	110	93	32	115	Fail
M_BD_022	Bedroom	4	110	167	32	143	Fail
M_BD_023	Bedroom	4	110	166	32	142	Fail
M_BD-024	Bedroom	4	110	108	32	126	Fail
M_BD-025	Bedroom	4	110	165	32	139	Fail
M_BD_026	Bedroom	4	110	165	32	139	Fail
M_BD-027	Bedroom	4	110	161	32	138	Fail
M_BD_028	Bedroom	4	110	178	32	89	Fail
M_BD_029	Bedroom	4	110	141	32	95	Fail
M LK1_021	Living Room / Kitchen	4	59	91	N/A	N/A	Fail
M LKK1-022	Living Room / Kitchen	4	59	128	N/A	N/A	Fail
M_LK1_023	Living Room / Kitchen	4	59	158	N/A	N/A	Fail
M_LK1_02 4	Living Room / Kitchen	4	59	165	N/A	N/A	Fail
M_LK2_021	Living Room / Kitchen	4	59	119	N/A	N/A	Fail
M_LK3_021	Living Room / Kitchen	4	59	128	N/A	N/A	Fail
M LK3 -022	Living Room / Kitchen	4	59	154	N/A	N/A	Fail
N_BD_021	Bedroom	7	110	142	32	70	Fail
N BD-022	Bedroom	7	110	124	32	96	Fail
N BD_023	Bedroom	7	110	115	32	112	Fail
$\frac{\mathrm{N} \text { BD-024 }}{}$	Bedroom	7	$\frac{110}{110}$	$\frac{180}{209}$	$\frac{32}{32}$	79 130	Fail
N ${ }^{\text {B BD_O25 }}$	Bedroom	7	110 110	299	32 32	130 152	Fail
N_BD-027	Bedroom	7	110	203	32	149	Fail
N_LK2_021	Living Room / Kitchen	7	59	77	N/A	N/A	Fail
N_LK2_022	Living Room / Kitchen	7	59	134	N/A	N/A	Fail
N_LK3_021	Living Room / Kitchen	7	59	121	N/A	N/A	Fail
O_BD_021	Bedroom	7	110	145	32	65	Fail
O_BD_022	Bedroom	7	110	106	32	102	Fail
$\bigcirc{ }^{\text {O_BD_023 }}$	Bedroom	7	110	94	32	66	Fail
O_BD_024	Bedroom	7	110	145	32	108	Fail
O_BD_025	Bedroom	7	110	145	32	107	Fail
O_LK1_021	Living Room / Kitchen	7	59	145	N/A	N/A	Fail
O_LK2_021	Living Room / Kitchen	7	59	83	N/A	N/A	Fail
O_{-}LK2 022	Living Room / Kitchen	7	59	67	N/A	N/A	Fail
P_BD_021	Bedroom	6	110	100	32	99	Fail
P_BD_022	Bedroom	6	110	118	32	131	Fail
P_BD_023	Bedroom	6	110	165	32	115	Fail
P_BD_024	Bedroom	6	110	201	32	79	Fail
P_BD_025	Bedroom	6	110	146	32	83	Fail
P_BD_026	Bedroom	3	110	229	32	85	Fail
P-BD 027	Bedroom	3	110	163	32	103	Fail
P ${ }^{\text {P }}$ BD 028	Bedroom	3 3	$\frac{110}{110}$	$\frac{128}{58}$	32 32	125	Fail
P BD 029	Bedroom Living Room / Kitchen	3	110 59	143	N/A	8	$\stackrel{\text { Fail }}{ }$
P_LK1_022	Living Room / Kitchen	3	59	143	N/A	N/A	Fail
P_LK2_021	Living Room / Kitchen	6	59	154	N/A	N/A	Fail
P_LK2_022	Living Room / Kitchen	6	59	128	N/A	N/A	Fail
P_LK3_021	Living Room / Kitchen	3	59	190	N/A	N/A	Fail
R_BD_021	Bedroom	6	110	147	32	77	Fail
R BD 0210	Bedroom	4	110	288	32	129	Fail
	Bedroom	4	110	159	32	116	Fail
	Bedroom	6	110	184	32 32	$\stackrel{114}{114}$	${ }_{\text {Fail }}$
R_BD-024	Bedroom	6	110	181	32	87	Fail
R_BD_025	Bedroom	6	110	162	32	136	Fail
R_BD_026	Bedroom	6	110	263	32	149	Fail
R_BD_027	Bedroom		110	223	32	164	Fail

1.3.3 Non-domestic Overheating Results DSY2 \& DSY3

The results for the overheating assessment of the non-domestic areas using the London Heathrow DSY2 and DSY3, 2020s, high emissions, 50% percentile weather file are presented in the tables below.

DSY2						
	Operative temperature >24	Operative temperature >25	Operative temperature >26	Operative temperature >27	Operative temperature >28	Result
Restaurant kitchen	0	0	0	0	0	Pass
Restaurant dining	2	0	0	0	0	Pass
Supermarket display	1,572	1,374	10	0	0	Pass
Nursery	166	0	0	0	0	Pass
Fitness centre	342	0	0	0	0	Pass
Coffee shop	1,221	0	0	0	0	Pass
Coffee shop kitchen	0	0	0	0	0	Pass
Residential meeting space	1,792	0	0	0	0	Pass
Residents' lounge	1,959	0	0	0	0	Pass
Coffee shop	2,396	364	0	0	0	Pass
Coffee shop food prep	0	0	0	0	0	Pass
Hair dresser	882	598	21	0	0	Pass
Dry cleaner	1,221	263	0	0	0	Pass
Workshare hub	1,321	632	0	0	0	Pass
Concierge	1,569	0	0	0	0	Pass
Maintenance office	1,085	914	2	0	0	Pass
Retail	893	402	1	0	0	Pass
Table 11.5 - Overheating results for the non-domestic areas using the DSY2 weather data for conditioned buildings						
DSY3						
	Operative temperature >24	Operative temperature >25	Operative temperature >26	Operative temperature >27	Operative temperature >28	Result
Restaurant kitchen	0	0	0	0	0	Pass
Restaurant dining	0	0	0	0	0	Pass
Supermarket display	1,468	1,447	0	0	0	Pass
Nursery	177	0	0	0	0	Pass
Fitness centre	441	0	0	0	0	Pass
Coffee shop	1,198	0	0	0	0	Pass
Coffee shop kitchen	0	0	0	0	0	Pass

Residential meeting space	1,634	0	0	0	0	Pass
Residents' lounge	1,908	0	0	0	0	Pass
Coffee shop	2,276	366	1	0	0	Pass
Coffee shop food prep	0	0	0	0	0	Pass
Hair dresser	817	673	15	0	0	Pass
Dry cleaner	1,067	421	0	0	0	Pass
Workshare hub	1,263	700	0	0	0	Pass
Concierge	1,487	0	0	0	0	Pass
Maintenance office	1,097	921	0	0	0	Pass
Retail	849	467	0	0	0	Pass
Table $11.6 ~-~ O v e r h e a t i n g ~ r e s u l t s ~ f o r ~ t h e ~ n o n-d o m e s t i c ~ a r e a s ~ u s i n g ~ t h e ~ D S Y 2 ~ w e a t h e r ~ d a t a ~ f o r ~ c o n d i t i o n e d ~$ buildings						

11.4 Area-weighted Average Actual and Notional Cooling Demands for Non-domestic Buildings

							Displaced
	Heating	Cooling	Auxiliary	Lighting	DHW	Equipment	Electricity
Demand $\left(\mathrm{kWh} / \mathrm{m}^{2}\right)$	1.82	42.69	12.64	73.59	99.88	126.06	0.00

Actual Annual Demand: Supermarket

Notional Annual Demand: Supermarket

	Heating	Cooling	Auxiliary	Lighting	DHW	Equipment	Displaced Electricity
Demand $\left(\mathrm{kWh} / \mathrm{m}^{2}\right)$	4.30	148.89	4.11	53.55	1.23	158.51	0.00

Actual Annual Demand: Fitness Centre

Notional Annual Demand: Fitness Centre

Actual Annual Demand: Residents lounge

	Heating	Cooling	Auxiliary	Lighting	DHW	Equipment	Displaced Electricity
Demand $\left(\mathrm{kWh} / \mathrm{m}^{2}\right)$	0.16	67.17	7.58	65.50	0.63	28.79	0.00

11.5 Communication with Local Borough and/or Local Heat Network Operators
chapmanbdsp has contacted Barnet's Energy Resource Manager (Nigel Bell) to enquire about the potential of
 distance and having the Ml as an obstacle. He also mentioned not being aware of any other network on Mill Hill's side of the M1, recommending us to look in the London Heat Map. As the London Heat Map image shows, there are no other networks in the vicinity.

Nonetheless, Pentavia Mill Hill's Energy Centre is being equipped with connection points that will allow the development to connect to a district network, shall one become available in the future. The location, size and ayout of the plantroom as well as the set-up of the building heating system (i.e. communal heating system with single plantroom, single capped off pipework connection point, space for heat exchanger) allows for the easy connection to such a network.

From:	Bell, Nigel
то:	Randler, zohn (canta)
ce:	
Subject:	FW: Mill Hill - Availdilily of Heat Netwo
Date:	14 December 2016 18:37:38
Attachments:	$72 \mathrm{df6397}$-7261-4e2e-83ad-bet900810276.png
	Simegecraden.PNG

Hi John,
Trust you are keeping well
Are you aware of any potential heating networks in the vicinity of this proposed housing developmen Are you aware of any potential heating networks in the vicinity of this proposed housing development
which appears to occupy the site of the former Pentavia Retail Park at Mill Hill adjacent the Watford Way?

Gary - As you mention I am aware of the Grahame Park District Heating Scheme on the opposite side of the M1 which is currently part of a major regeneration scheme and as noted is some distance away
On the development side of the MII am not aware of any significant schemes currently operating in the vicinity although if you have not already done so it may be worthwhile referring to the GLA London Heat Map.
https://www/londongov.uk/what-we-do/environment/energy/london-heat-map/view-london-heat-map
John - your thoughts in respect to current initiates in the area would be helpful.
Kind Regards
Nigel
Nigel Bel
Energy Resource Manager
Customer and Support Group
of Barne
1255 High Road
Whetstone
London N20 0EJ
Tel: 02083594571
Mobile: 07958796501
Barnet Online: www.bamet.gov.uk
4. please consider the environment - do you really need to print this email?

From: Gary Wedlake [mailto:Gary.Wedlake@chapmanbdsp.com]

Sent: 12 December 2016 17:08
To: Bell, Nigel
Cc: Paul Hussey; Joanna Conceicao; 'john.mitri@cpcprojectservices.com'
Subject: Mill Hill - Availability of Heat Networks

Hi Nigel
We are looking at a proposed housing development in Mill Hill of 695 properties.

Could you advise if there are any existing district heating networks within the vicinity that would be suitable for the connection of this size of development. Our initial investigations indicated that the only possible heat network was on the other side of the M1 and hence provide difficulties to connect.

If no suitable existing heat networks are available we would be propose an on site energy centre with CHP and Boiler provision for a localised on site district heating network for heating and hot water services. The system would be left with the facility to connect on to any future district heating network that becomes available in the area.

Please would you advise if there are any existing suitable district heating opportunities in this area. I attach a location plan for the project. If you have any queries please do not hesitate to contact me.

Thanks
Gary
Gary Wedlake
Associate Directo

Chapman
 fBosp

T: $\quad+44$ (0) $1732221800 \mid$ ChapmanBDSP

M: $\quad+44(0) 7718560243$	$\begin{array}{l}35 \text { Kings Hill Avenue } \\ \text { Kings Hill, West Malling }\end{array}$

www.chapmanbdsp.com

Preliminary Energy Centre sizing analysis produces a requirement for circa $250 \mathrm{~m}^{2}$ as shown in the illustrations on the right.
chapmanbdsp
Preliminary Energy Centre
Plantroom 17200 mm wide $\times 14700 \mathrm{~mm}$ deep (overall)

Figure 11.1 - Preliminary plant room layout

Figure 11.2-3D view of the preliminary plant room layout

Estimating annual energy demand/consumption
For the purposes of the preliminary CHP analysis, the following empirical benchmarks have been used:

Usage	Heat (including DHW)	Electricity	Notes/Sources:
	kWh/m2/an	kWh/m2/an	
Residential	50 (55\% of which DHW)	43	Based on approx. primary energy targets for residential from literature
$\begin{aligned} & \text { Commercial [A1, A3-A4, } \\ & \mathrm{D} 1, \mathrm{C} 3] \end{aligned}$	120 (80\% of which DHW)	95	Allowance - exact mix of uses TBC
Car Park	0	20	TM46
Plant/Refuse/Bike Store	0	20	Allowance - as Car Park

he specific benchmark figures are intended to be realistic rather than overly optimistic in terms of performance (especially given the so-called 'performance gap' between operation and design), but equally to allow for improved energy standards as a result of better specification and higher build quality in-line with improvements to the Building Regulations.

As noted above, annual hourly load profiles for heat and electricity demand have been generated for (i) the esidential areas, and (ii) all other uses.

While additional load profiles could, in principle, have been created for each type of commercial areas to reflect the different planning classes, specific usages for these commercial areas have yet to be fully defined and they constitute a small fraction of the total area of the scheme.

Residential benchmarks
relation to new-build dwellings, there is very little solid published information available on the range of actua nergy consumption in use (let alone that for medium-rise apartment blocks which characterise the Pentavia scheme). For instance, the information in CIBSE Guide F and TM46 is somewhat out of date and does not specifically address residential use anyway (other than quasi-residential uses such as hostels, nursing homes etc.).

In terms of primary energy, example benchmarks include:

Benchmark	Figure (Primary Energy)
Dwellings built to Passivhaus Standards	$\leq 120 \mathrm{kWh} / \mathrm{m} 2 / \mathrm{yr}$ $(\leq 15 \mathrm{kWh} / \mathrm{m} 2 / \mathrm{yr}$ for space heating, etc.)
AECB Silver Standard	$\leq 135 \mathrm{kWh} / \mathrm{m} 2 / \mathrm{yr}$ $(\leq 40 \mathrm{kWh} / \mathrm{m} 2 / \mathrm{yr}$ for heating + cooling, etc.)
Low-Energy Buildings (LEB) Database (average of completed projects)	$145 \mathrm{kWh} / \mathrm{m} 2 / \mathrm{yr}$
Average UK Home	$>400 \mathrm{kWh} / \mathrm{m} 2 / \mathrm{yr}$

able 11.8 - Example empirical benchmarks from the literature
chapmanbdsp have used a benchmark which equates to $\mathrm{c} .175 \mathrm{kWh} / \mathrm{m} 2 / \mathrm{yr}$ in terms of primary energy consumption (to get to a primary energy figure, metered electricity assumption is multiplied by a primary energy factor to account for generation and transmission losses in the electricity supply grid. For UK, the figure is approximately 2.92).

In comparison to the consumption figures for the 'Be Lean' case from the SAP Calculations, the assumed specific heat and electricity consumptions are about 16% higher, which seems reasonable.

From the SAP calculations, domestic hot water (DHW) heating accounts for $\mathrm{c} .57 \%$ of overall heat demand (whereas for the SBEM calculations for commercial (non-domestic) areas, DHW accounted for c.95\%).

Annual demand profiles
The graphs in Figure 11.3 show example profiles for the residential element of the scheme for a peak winter and summer week

(a) Example Residential Demand Profiles for a Winter Week (December)

(b) Example Residential Demand Profiles for a Summer Week (July)

Figure 11.3-Example weekly load profiles for the Residential Buildings
Key points to note are that:

- The demand profiles are estimations only, although their shapes are derived from monitoring of rea buildings in use (also, for example, the electrict
- The demand profiles are normalised by the annual energy demand figures for heat (thermal) and electricity (as explained earlier);
- It is assumed that demand for heating would occur primarily between $05: 00$ and $24: 00$, so there would be minimal demand in the early hours of the morning. Whereas for electricity, there will be a 'base load' at all times due to plant, appliances (even if in stand-by mode), lighting and so on ($>100 \mathrm{~kW}$):
- The profiles also assume that energy demand will peak in the early morning and later afternoon/evening as the majority of people get ready to leave for work and return home respectively;
- The heating demand is dominated by the spikes in the DHW demand. During the summer week, there is no demand for space heating and this 'variable' demand disappears;
- The profiles allow for an increase in energy demand during weekends (in comparison to weekdays) when more residents are expected to be at home.

The estimated annual site demand profiles used in the CHP Analysis are shown in the figure below:

Figure 11.4 - Estimated Annual hourly Combined (Site) Demand Profiles for Electricity and Heat
The estimated thermal demand is also plotted as a load duration curve in Figure 11.5:

Figure 11.5 - Approximate Load Duration Curve showing site thermal/heat demand (this also shows the largest
 capacity of a CHP unit, but does not allow for factors such as turn-down, thermal storage and so on)

As the scheme progresses, it is expected that further work will be undertaken to evaluate demand profiles with inputs from dynamic thermal modelling of buildings and so on

CHP analysis
CHP analysis is carried out on the basis of the estimated site hourly annual demand profiles using an in-house Excel-based CHP Analysis Tool.
This works on the following basis:

- Information on efficiencies at part-load for both the CHP units and back-up boilers is entered on the basis of gross efficiencies (i.e. for the CHP, net electrical and thermal outputs (after accounting for parasitic loads) divided by the fuel input (based on the gross calorific value of, in this case, natural gas);
- A single CHP Unit strategy is assumed with associated thermal store and back-up boilers;
- The heat load of the building is met by the CHP, thermal store and (back-up) boilers in that order of priority;
All heat generators/sources are available 24 hours per day. However, it is assumed that the CHP would be unavailable for 3 days per annum for maintenance (as an initial assumption, so as not to over-exaggerate run hours or carbon savings), during which the (as an initial assumption, so as not to over-exaggerate thermal store had been exhausted) and grid electricity import;
- The CHP charges the thermal store whenever it is able (the thermal store is only charged by the CHP and not by the boilers, which are for meeting peak loads);
- It is assumed that the CHP Unit (as per manufacturer's information) can modulate or turn-down to 50% o peak output (but no lower) - this is in fact automatically inferred based on the part-load data entered and would also run for a minimum one hour cycle when on (to avoid excessive cycling and also so as not to exaggerate run hours);
- The CHP unit is also regulated to avoid the need to dump excess heat or power
- The size of the CHP unit and the size of the thermal store can be varied automatically to assist in optimising sizing of the CHP and thermal store;

Detailed quantitative and graphical outputs/results are generated together with reflected inputs for each scenario;

- Results can be analysed on an annual, weekly, and daily basis - with shorter timescales giving more information about how the CHP plant is being operated and controlled and allowing different strategies to be tested

Illustrative Weekly Outputs from the chapmanbdsp CHP Analysis Tool are shown in Figure 11.6 and Figure 11.7

Figure 11.6 - Thermal output of the single CHP Unit is regulated to avoid the need to 'dump' excess electricity

Figure 11.7 - Excess electricity (beyond that required to meet the electrical load of the buildings) can be dumped or (preferably) exported to the grid

Each graphic shows 6 individual weekly graphs (running from Monday to Sunday) illustrating the following:

- Thermal/Heat Demand Profile for Site (with CHP Heat Generation overlaid);
- How the Thermal Demand is met (through heat from CHP, Thermal Store and then Boilers);
- Electrical Demand Profiles (with CHP Electricity Generation overlaid);
- How the Electrical Demand is met (through CHP generation and import from the grid);
- State of the thermal store (\% charged):
- Ambient temperature profile.

Optimal CHP size
In terms of identifying an optimal CHP size, analysis was run on the basis of engines with Heat to Power Ratios (HPR) of 1.6 (as per the Ener-G units and other 'Low NOx' units) and 1.1 (i.e. more bias to power generation) with gross efficiencies of $\mathrm{c} .80 \%$ at full-load and similar part-load performance.

Two graphics are presented - Figure 11.8 and Figure 11.9, with the thermal capacity of the CHP Unit (kWth) is varied in steps, with the thermal store auto-sized so that it can be charged on the basis of 4 hours of the CHP engine running at full output.
Each graphic contains 6 individual graphs:

- Annual carbon emissions (in tCO2e per annum);
- Annual operational time (in hours per annum - full load equivalent (FLE));
- Annual heat fraction (\%);
- Annual power fraction (\%);
- Annual breakdown of carbon emissions from CHP, Boilers, and Grid Electricity Import (\%);
- Size of the Thermal Store (litres) assumed for the given CHP size.

Figure 11.8 - Impact of varying CHP Thermal Capacity for single CHP engine with HPR of 1.1 (gross efficiency 80% at full-load and 76% at 50% load
Thermal store is auto-sized to provide 4 hours heat storage at maximum engine output for each CHP size

${ }^{\text {mamem }}$	
mom	
-	
mmom	

Figure 11.9 Impact of varying CHP Thermal Capacity for single CHP engine with HPR of 1.56 (gross efficiency 80% at full-load and 76% at 50% load)
Thermal store is auto-sized to provide 4 hours heat storage at maximum engine output for each CHP size
The analysis suggests that for a CHP unit with a HPR of 1.1, the optimum size would be c.300-400 kWth (270 360 kWe) as above this there is little benefit in respect to reduced site-wide carbon emissions (as run hours would tend to reduce for larger units due to their more limited flexibility to turn-down during periods when loads are low). For instance, a c. 400 kWth engine could run for around 6,500 hours per annum (full load equivalent) and meet c.65-70\% of the annual heat demand and c.62-65\% of the annual electricity demands.

For a CHP unit with a higher HPR of 1.5-1.6, the optimum size would be c. 400 kWth (250 kWe). This could run for around 6,700 hours per annum (full load equivalent) and provided up to 80% of the site annual heat demand and around 55% of the annual electricity demands.

As the graphs demonstrate, where a single CHP unit becomes 'too big', its run hours and potential for carbon savings eventually become limited by its inability to run when loads are too low.

Note that the thermal storage in this case is auto-sized to represent 4 hours of maximum heat output from the engine running at full-load (rather than, say, 1 hour of maximum heat output), based on findings from initial analysis and also taking into account that on a daily basis there should be 4-6 hour 'windows' in late evening and early morning where heat demand should be very low and there is an opportunity to recharge the thermal store to help meet peak daily heat loads.

With regarding to sizing of the CHP units and NOx emissions, research undertaken by chapmanbdsp has ndicated that there are relatively few packaged CHP units (based on spark ignition engines) with integrated NOX abatement that can meet the GLA Emissions Standards for Band B developments such as Pentavia.

For example, as well as the Ener-G Units, Bosch also produce packaged low NOx CHP Units. However, the packaged low NOx units all seem to be limited to electrical outputs of c.230-240kWe or lower and have similarly (high) HPRs.

Gas turbines can also produce very low NOx emissions but tend to be much bigger in terms of capacity. There are a few smaller units such as the Capstone C200 (200kWe) MicroTurbine (which can also be linked together to form modular installations with a shared flue), but these have HPRs of 1.5-1.6 as well (i.e. similar to the Bosch and Ener-G low NOx engines). Fuel Cell CHP units can have HPRs lower than 1 but are still very rare in the UK and very expensive.

It therefore seems to make sense to look at CHP engines with lower HPR (increased bias towards electricity generation, which are more suited to the predicted demand profile of the Pentavia site given current
information) combined with separate 'external' pollution abatement (i.e. this is not part of the packaged CHP Unit) using SCR (Selective Catalytic Reduction) technology

Hoval power block EG 460 unit
Based on the findings above, further analysis has been carried out based on a Hoval PowerBlock 460 Unit $460 \mathrm{kWe} / 584 \mathrm{kWth}$. Efficiencies stated in the manufacturer's datasheets are net and have been converted to gross. The boilers provisionally selected for the scheme are also manufactured by Hoval.

The unit has a gross efficiency of 80.2% at full load (HPR 1.27), 80.4% at 75% load (HPR 1.29) and 80.5% at 50% oad (HPR 1.37). The performance of this unit (including part-load efficiencies) has been analysed using the CHP Tool. The results from this have been in turn been fed into the updated SAP Calculations in order to calculate the site wide emissions savings. The analysis indicates that an annual heat fraction of c.66\% should be achievable

The analysis (which also produces detailed numerical outputs) also indicated that the average annual efficiencies of the unit were very close to the efficiencies at 75% load and so these have also been used in the SAP Calculations (i.e. electrical efficiency of 35% and thermal efficiency of 45.3%).

It is noted that similar performance should be achievable from units from other manufacturers (which might differ slightly in terms of rated capacities), so the analysis is not critically dependent on one CHP unit from on supplier.

11.8 Unviable Low and Zero Carbon technologies

Solar thermal
Solar water heating is currently one of the most cost effective and affordable renewable technologies Renewable solar energy is converted to heat via panels that absorb the high frequency heat radiation emitted from the sun. Evacuated tube technology maximises useful heat extraction even on a cold, cloudy day.

However solar thermal installation would compete against the proposed communal CHP installation for the base heating load hence reducing the impact of "CLEAN" measures and further increasing the system contro and maintenance complexity.

Therefore, solar water heating is not appropriate for the Pentavia, Mill Hill development
Wind turbines
Wind turbines come in vertical and horizontal axis forms and generate electrical energy using the wind. They have in the past received a poor reputation due to their carbon intensive construction and issues associated with noise and visual impact of wind farms. However, systems are becoming more and more common as well as more accepted even in some low-density urban areas or for exceptionally tall buildings. Small scale turbines suitable for domestic type environments are also now more available and affordable.

With consideration to the low average wind speeds in the densely built area of the site, wind turbines are not proposed.

Heat pumps

Air source heat pump systems can efficiently elevate low-grade environmental heat from air or ground to the level required for space heating and even domestic hot water system (albeit at low efficiency). Heat pumps work much more efficiently at a lower temperature ($28-35 \mathrm{C}$) than a standard boiler system and are hence suitable to "low-exergy" underfloor heating systems or larger low-temperature radiator and fan-col解 onger periods of time.

This proposed scheme includes a fast response CHP system that is higher on the Energy Hierarchy. Also, CHP would compete with heat pumps for the building heating base load and increase communal system contro complexity
Ground Source and Air Source Heat Pumps are therefore not proposed for this development.
Alternative fuels (i.e. Biofuels and Biomass
Alternative fuels such as solid biomass or liquid bio-fuels are used to achieve very high NET carbon emissions savings under building regulations, albeit often with local increase in pollutant emissions and raising some oncerns about sustanable management or natural resources related to overexploitation of biomass fuel. The a lhat bis balanced by that absorbed during the fuels production though sustainable management practices (i.e. deforestation).

In order to ensure efficient operation, biomass boilers are typically sized to meet a constant rather than highly variable base load. Moreover, in an urban location such as that of Mill Hill, transport and delivery of biomass would be extremely problematic and would increase the carbon intensity of the fuel. Certain biomass sources are also claimed to threaten food production and as such considered unsustainable. From an air quality combustion and often do not meet requirements of the Clean Air Act and Local Air Quality Management Plans.

Some liquid bio fuels relate to organic matter similar to biomass and hence don't offer significant advantages ver solid biomass. However certain liquid bio-fuels such as that derived from medical waste and certified by SCC protocol have extremely low poliutant emission factors (i.e. CO2, NOx and particulates emission much ower than biomass) that qualifies them as a viable solution even in the areas with sensitive air quality. This is ermed a carbon neutral process but only when the source of the fuel is renewable. Examples include sustainable rotation coppiced woodland used to produce solid biomass fuels and rape seed oil/ waste used to produce biodiesel.
Both biomass and bio fuels would require a significant fuel storage area or regular fuel deliveries with ignificant noise impact in this predominantly quiet residential and leisure area and the resulting increase in significant noise impact in this predominantly

Given the impact of local emissions from combustion of biomass fuel on air quality, biomass have not been proposed for this development whilst ISCC certified biofuel is eliminated due to noise and traffic issues related to frequent fuel deliveries in a residential area

SAP 2012 PERFORMANCE		
DOMESTIC		
Table 1: Carbon Dioxide Emisions after each stage of the Energy Hierarchy for domestic buildings		
	Carbon Dioxide Emissions for domestic buildings (Tonnes CO_{2} per annum)	
	Regulated	Unregulated
Baseline: Part L 2013 of the Building Regulations Compliant Development	1,014	1,122
After energy demand reduction	978	1,122
After heat network / CHP	615	1,122
After renewable energy	531	1,122

Table 2 : Regulated Carbon Dioxide savings from each stage of the Energy Hierarchy for domestic buildings

	Regulated domestic carbon dioxide svings	
	(Tonnes CO_{2} per annum)	(\%)
Savings from energy demand reduction	36	4\%
Savings trom heat network / CHP	363	36\%
Savings from renewable energy	${ }^{84}$	8\%
Cumulative on site savings	483	48\%
Annual savings from off-set payment	531	-
Cumulative savings for off-set payment	15,939	-
Cash in-liee contribution (E)	956,319	

Table 2 : Regulated Carbon Dioxide savings from each stage of the Energy Hierarchy for domestic buildings

	Regulated domestic carbon dioxide svings	
	(Tonnes CO_{2} per annum)	(\%)
Savings from energy demand reduction	58	6\%
Savings fom heat network/ / HP	${ }^{-86}$	-10\%
Savings from renewable energy	38	4\%
Cumulative on site savings	10	1\%
Annual savings from off-set payment	887	-
	(Tonnes CO_{2})	
Cumulative savings for off-set payment	26,622	-
Cash in-lieu contribution (E)	1,597,339	

NON-DOMESTIC

	Carbon Dioxide Emissions for non-domestic buildings (Tonnes CO2 per annum)	
	Regulated	Unregulated
Baseline: Part L 2013 of the Building Regulations Compliant Development	301	122
After energy demand reduction	260	122
After heat network / / HP	234	122
After renewable energy	234	122

	Carbon Dioxide Emissions for non-domestic buildings (Tonnes CO2 per annum)	
	Regulated	Unregulated
Baseline: Part L 2013 of the Building Regulations Compliant Development	157	55
After energy demand reduction	136	${ }_{55}$
After heat network / CHP	144	55
After renewable energy	144	55

hanmunhten

	Regulated non-domestic carbon dioxide savings	
	(Tonnes CO_{2} per anum)	(\%)
Savings from energy demand reduction	41	13\%
Savings from heat network / CHP	${ }^{26}$	9\%
Savings from renewable energy	0	0\%
Total Cumulative Savings	67	22\%

Table 5: Shortfall in regulated carbon dioxide savings

	Anuul Shortall (Tannes Co2)	Cumulaitive Shortall (Tonnes So2)
Total Target Savings	105	-
Shortfall	39	1,156
Cash in-lieu contribution (E)	69,330	-

	Regulated non-domestic carton dioxide svings	
	(Tonnes CO_{2} per annum)	(\%)
Savings from energy demand	${ }^{21}$	13\%
Savings from heat network/ CHP	-7	-5\%
Savings from renewable energy	0	0\%
Total Cumulative Savings	${ }^{13}$	8\%

Table 5 : Shortfall in regulated carbon dioxide savings

	Annual Shortfall (Tonnes CO_{2})	Cumulative Shortfall (Tonnes CO_{2})
Total Target Saving	55	-
Shortrall	42	1,251
Cash in-lieu contribution ($£$)	75,032	.

SITE-WIDE							
	Total regulated emissions (Tonnes CO2 / year)	$\begin{gathered} \text { Co2 saings } \\ \text { (Tonnes coz / year) } \end{gathered}$	Percentage savings (\%)		Total regulated emissions (Tonnes CO2 / year)		Percentage savings (\%)
PartL 2013 baseline	1,315			Patt L2013 baseline	1,055		
Be lean	1,239	77	6\%	Belean	976	79	7\%
Be clean	849	389	30\%	Be clean	1,069	-93	.9\%
Be green	765	84	6\%	Be green	1,031	38	4\%
	-	CO2 savings off-set (Tonnes CO2)	-		-	CO2 savings off-set (Tonnes CO_{2})	-
Off.set	-	17,04	-	Off.set	-	27,873	-

[^0]: Figure 1.2 - Regulated CO_{2} missions after each stage of the energy hierarchy for non-domestic buildings

[^1]: Figure 1.3 - Regulated CO_{2} emissions after each stage of the energy hierarchy for the whole site

